Suppr超能文献

基于自噬相关基因的头颈部鳞状细胞癌新型生存模型的建立和验证。

Development and validation of a novel survival model for head and neck squamous cell carcinoma based on autophagy-related genes.

机构信息

The College of Medical Technology, Shanghai University of Medicine&Health Sciences, Shanghai, China.

Department of stomatology, University of Chinese Academy of Sciences - Shenzhen Hospital, Shenzhen, Guangdong, China.

出版信息

Genomics. 2021 Jan;113(1 Pt 2):1166-1175. doi: 10.1016/j.ygeno.2020.11.017. Epub 2020 Nov 20.

Abstract

BACKGROUND

In view of the critical role of autophagy-related genes (ARGs) in the pathogenesis of various diseases including cancer, this study aims to identify and evaluate the potential value of ARGs in head and neck squamous cell carcinoma (HNSCC).

METHODS

RNA sequencing and clinical data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis and Lasso Cox regression analysis model established a novel 13- autophagy related prognostic genes, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the efficiency of prognostic risk model was tested by receiver operating characteristic (ROC) curve analysis based on data from TCGA database and Gene Expression Omnibus (GEO). Besides, the other independent datasets from Human Protein Atlas dataset (HPA) also applied.

RESULTS

13 ARGs (GABARAPL1, ITGA3, USP10, ST13, MAPK9, PRKN, FADD, IKBKB, ITPR1, TP73, MAP2K7, CDKN2A, and EEF2K) with prognostic value were identified in HNSCC patients. Subsequently, a prognostic risk model was established based on 13 ARGs, and significantly stratified HNSCC patients into high- and low-risk groups in terms of overall survival (OS) (HR = 0.379,95% CI: 0.289-0.495, p < 0.0001). The multivariate Cox analysis revealed that this model was an independent prognostic factor (HR = 1.506, 95% CI = 1.330-1.706, P < 0.001). The areas under the ROC curves (AUC) were significant for both the TCGA and GEO, with AUC of 0.685 and 0.928 respectively. Functional annotation revealed that model significantly enriched in many critical pathways correlated with tumorigenesis, including the p53 pathway, IL2 STAT5 signaling, TGF beta signaling, PI3K Ak mTOR signaling by gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). In addition, we developed a nomogram shown some clinical net could be used as a reference for clinical decision-making.

CONCLUSIONS

Collectively, we developed and validated a novel robust 13-gene signatures for HNSCC prognosis prediction. The 13 ARGs could serve as an independent and reliable prognostic biomarkers and therapeutic targets for the HNSCC patients.

摘要

背景

鉴于自噬相关基因 (ARGs) 在包括癌症在内的各种疾病发病机制中的关键作用,本研究旨在鉴定和评估 ARGs 在头颈部鳞状细胞癌 (HNSCC) 中的潜在价值。

方法

对癌症基因组图谱 (TCGA) 中的 RNA 测序和临床数据进行单变量 Cox 回归分析和 Lasso Cox 回归分析模型,建立了一个新的 13 个自噬相关预后基因,用于构建预后风险模型。使用多变量 Cox 比例回归模型和生存分析来评估预后风险模型。此外,还基于 TCGA 数据库和基因表达综合数据库 (GEO) 的数据,通过接受者操作特征 (ROC) 曲线分析来验证预后风险模型的效率。此外,还应用了来自人类蛋白质图谱数据集 (HPA) 的其他独立数据集。

结果

在 HNSCC 患者中鉴定出 13 个具有预后价值的 ARGs (GABARAPL1、ITGA3、USP10、ST13、MAPK9、PRKN、FADD、IKBKB、ITPR1、TP73、MAP2K7、CDKN2A 和 EEF2K)。随后,基于这 13 个 ARGs 建立了一个预后风险模型,并根据总生存期 (OS) 将 HNSCC 患者显著分为高风险和低风险组 (HR=0.379,95%CI:0.289-0.495,p<0.0001)。多变量 Cox 分析表明,该模型是一个独立的预后因素 (HR=1.506,95%CI=1.330-1.706,P<0.001)。ROC 曲线下面积 (AUC) 在 TCGA 和 GEO 中均具有显著意义,AUC 分别为 0.685 和 0.928。功能注释显示,该模型显著富集了许多与肿瘤发生相关的关键途径,包括 p53 途径、IL2 STAT5 信号、TGF beta 信号、PI3K Ak mTOR 信号通过基因集变异分析 (GSVA) 和基因集富集分析 (GSEA)。此外,我们开发了一个列线图,显示一些临床净可能被用作临床决策的参考。

结论

总之,我们开发并验证了一个新的用于预测 HNSCC 预后的稳健的 13 个基因特征。这 13 个 ARGs 可以作为 HNSCC 患者独立和可靠的预后生物标志物和治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验