Suppr超能文献

gCAnno:一种基于图的单细胞类型注释方法。

gCAnno: a graph-based single cell type annotation method.

机构信息

School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

出版信息

BMC Genomics. 2020 Nov 23;21(1):823. doi: 10.1186/s12864-020-07223-4.

Abstract

BACKGROUND

Current single cell analysis methods annotate cell types at cluster-level rather than ideally at single cell level. Multiple exchangeable clustering methods and many tunable parameters have a substantial impact on the clustering outcome, often leading to incorrect cluster-level annotation or multiple runs of subsequent clustering steps. To address these limitations, methods based on well-annotated reference atlas has been proposed. However, these methods are currently not robust enough to handle datasets with different noise levels or from different platforms.

RESULTS

Here, we present gCAnno, a graph-based Cell type Annotation method. First, gCAnno constructs cell type-gene bipartite graph and adopts graph embedding to obtain cell type specific genes. Then, naïve Bayes (gCAnno-Bayes) and SVM (gCAnno-SVM) classifiers are built for annotation. We compared the performance of gCAnno to other state-of-art methods on multiple single cell datasets, either with various noise levels or from different platforms. The results showed that gCAnno outperforms other state-of-art methods with higher accuracy and robustness.

CONCLUSIONS

gCAnno is a robust and accurate cell type annotation tool for single cell RNA analysis. The source code of gCAnno is publicly available at https://github.com/xjtu-omics/gCAnno .

摘要

背景

目前的单细胞分析方法在聚类水平上注释细胞类型,而不是理想的单细胞水平。多个可交换的聚类方法和许多可调参数对聚类结果有很大影响,通常导致不正确的聚类水平注释或后续聚类步骤的多次运行。为了解决这些限制,已经提出了基于良好注释的参考图谱的方法。然而,这些方法目前还不够强大,无法处理具有不同噪声水平或来自不同平台的数据集。

结果

在这里,我们提出了 gCAnno,一种基于图的细胞类型注释方法。首先,gCAnno 构建细胞类型-基因二分图,并采用图嵌入来获得细胞类型特异性基因。然后,构建朴素贝叶斯(gCAnno-Bayes)和 SVM(gCAnno-SVM)分类器进行注释。我们比较了 gCAnno 在多个单细胞数据集上的性能,这些数据集具有不同的噪声水平或来自不同的平台。结果表明,gCAnno 具有更高的准确性和鲁棒性,优于其他最先进的方法。

结论

gCAnno 是一种用于单细胞 RNA 分析的强大而准确的细胞类型注释工具。gCAnno 的源代码可在 https://github.com/xjtu-omics/gCAnno 上公开获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc2/7686723/e9ca9d436669/12864_2020_7223_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验