Ogishi Masato, Yang Rui, Gruber Conor, Zhang Peng, Pelham Simon J, Spaan András N, Rosain Jérémie, Chbihi Marwa, Han Ji Eun, Rao V Koneti, Kainulainen Leena, Bustamante Jacinta, Boisson Bertrand, Bogunovic Dusan, Boisson-Dupuis Stéphanie, Casanova Jean-Laurent
St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065;
St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065.
J Immunol. 2021 Jan 1;206(1):206-213. doi: 10.4049/jimmunol.2000854. Epub 2020 Nov 23.
High-dimensional cytometry is a powerful technique for deciphering the immunopathological factors common to multiple individuals. However, rational comparisons of multiple batches of experiments performed on different occasions or at different sites are challenging because of batch effects. In this study, we describe the integration of multibatch cytometry datasets (iMUBAC), a flexible, scalable, and robust computational framework for unsupervised cell-type identification across multiple batches of high-dimensional cytometry datasets, even without technical replicates. After overlaying cells from multiple healthy controls across batches, iMUBAC learns batch-specific cell-type classification boundaries and identifies aberrant immunophenotypes in patient samples from multiple batches in a unified manner. We illustrate unbiased and streamlined immunophenotyping using both public and in-house mass cytometry and spectral flow cytometry datasets. The method is available as the R package iMUBAC (https://github.com/casanova-lab/iMUBAC).
高维细胞计数法是一种用于解读多个个体共有的免疫病理因素的强大技术。然而,由于批次效应,对在不同时间或不同地点进行的多批次实验进行合理比较具有挑战性。在本研究中,我们描述了多批次细胞计数数据集整合(iMUBAC),这是一个灵活、可扩展且强大的计算框架,用于在多批次高维细胞计数数据集中进行无监督细胞类型识别,即使没有技术重复也可实现。在跨批次叠加来自多个健康对照的细胞后,iMUBAC学习批次特异性细胞类型分类边界,并以统一方式识别来自多个批次患者样本中的异常免疫表型。我们使用公开的和内部的质谱细胞计数法及光谱流式细胞术数据集展示了无偏且简化的免疫表型分析。该方法以R包iMUBAC(https://github.com/casanova-lab/iMUBAC)的形式提供。