Suppr超能文献

神经元放电和波形改变通过人类癫痫发作募集。

Neuronal Firing and Waveform Alterations through Ictal Recruitment in Humans.

机构信息

Department of Neurology, Columbia University Medical Center, New York, New York, 10032.

Department of Neurosurgery, University of Utah, Salt Lake City, Utah, 84132.

出版信息

J Neurosci. 2021 Jan 27;41(4):766-779. doi: 10.1523/JNEUROSCI.0417-20.2020. Epub 2020 Nov 23.

Abstract

Analyzing neuronal activity during human seizures is pivotal to understanding mechanisms of seizure onset and propagation. These analyses, however, invariably using extracellular recordings, are greatly hindered by various phenomena that are well established in animal studies: changes in local ionic concentration, changes in ionic conductance, and intense, hypersynchronous firing. The first two alter the action potential waveform, whereas the third increases the "noise"; all three factors confound attempts to detect and classify single neurons. To address these analytical difficulties, we developed a novel template-matching-based spike sorting method, which enabled identification of 1239 single neurons in 27 patients (13 female) with intractable focal epilepsy, that were tracked throughout multiple seizures. These new analyses showed continued neuronal firing with widespread intense activation and stereotyped action potential alterations in tissue that was invaded by the seizure: neurons displayed increased waveform duration ( < 0.001) and reduced amplitude ( < 0.001), consistent with prior animal studies. By contrast, neurons in "penumbral" regions (those receiving intense local synaptic drive from the seizure but without neuronal evidence of local seizure invasion) showed stable waveforms. All neurons returned to their preictal waveforms after seizure termination. We conclude that the distinction between "core" territories invaded by the seizure versus "penumbral" territories is evident at the level of single neurons. Furthermore, the increased waveform duration and decreased waveform amplitude are neuron-intrinsic hallmarks of seizure invasion that impede traditional spike sorting and could be used as defining characteristics of local recruitment. Animal studies consistently show marked changes in action potential waveform during epileptic discharges, but acquiring similar evidence in humans has proven difficult. Assessing neuronal involvement in ictal events is pivotal to understanding seizure dynamics and in defining clinical localization of epileptic pathology. Using a novel method to track neuronal firing, we analyzed microelectrode array recordings of spontaneously occurring human seizures, and here report two dichotomous activity patterns. In cortex that is recruited to the seizure, neuronal firing rates increase and waveforms become longer in duration and shorter in amplitude as the neurons are recruited to the seizure, while penumbral tissue shows stable action potentials, in keeping with the "dual territory" model of seizure dynamics.

摘要

分析人类癫痫发作时的神经元活动对于理解癫痫发作的起始和传播机制至关重要。然而,这些分析通常使用细胞外记录,受到各种在动物研究中已经确立的现象的极大阻碍:局部离子浓度的变化、离子电导率的变化以及强烈的、超同步的放电。前两种现象改变了动作电位的波形,而第三种现象增加了“噪声”;所有这三个因素都混淆了检测和分类单个神经元的尝试。为了解决这些分析上的困难,我们开发了一种新的基于模板匹配的尖峰分类方法,该方法能够识别 27 名难治性局灶性癫痫患者(13 名女性)的 1239 个单个神经元,这些神经元在多次癫痫发作中被跟踪。这些新的分析显示,在被癫痫侵袭的组织中,神经元继续放电,表现出广泛的强烈激活和定型的动作电位改变:神经元表现出增加的波形持续时间(<0.001)和减少的幅度(<0.001),与之前的动物研究一致。相比之下,在“边缘区”(那些受到来自癫痫的强烈局部突触驱动但没有局部癫痫入侵的神经元证据)的神经元表现出稳定的波形。所有神经元在癫痫发作终止后恢复到发作前的波形。我们的结论是,在单个神经元水平上,区分被癫痫侵袭的“核心”区域和“边缘”区域是明显的。此外,波形持续时间增加和幅度减小是癫痫入侵的神经元内在特征,这会阻碍传统的尖峰分类,并可作为局部募集的特征。动物研究一致表明,在癫痫发作期间动作电位的波形发生明显变化,但在人类中获得类似的证据证明是困难的。评估神经元在癫痫发作事件中的参与对于理解癫痫发作的动态和定义癫痫病理的临床定位至关重要。我们使用一种新的方法来跟踪神经元的放电,分析了自发发生的人类癫痫发作的微电极阵列记录,并在此报告两种二分活动模式。在被癫痫募集的皮层中,随着神经元被募集到癫痫中,神经元的放电率增加,波形的持续时间变长,幅度变短,而边缘组织显示出稳定的动作电位,与癫痫发作动力学的“双重区域”模型一致。

相似文献

1
Neuronal Firing and Waveform Alterations through Ictal Recruitment in Humans.
J Neurosci. 2021 Jan 27;41(4):766-779. doi: 10.1523/JNEUROSCI.0417-20.2020. Epub 2020 Nov 23.
2
Single unit action potentials in humans and the effect of seizure activity.
Brain. 2015 Oct;138(Pt 10):2891-906. doi: 10.1093/brain/awv208. Epub 2015 Jul 17.
4
Dual mechanisms of ictal high frequency oscillations in human rhythmic onset seizures.
Sci Rep. 2020 Nov 5;10(1):19166. doi: 10.1038/s41598-020-76138-7.
5
Cell-type specific and multiscale dynamics of human focal seizures in limbic structures.
Brain. 2023 Dec 1;146(12):5209-5223. doi: 10.1093/brain/awad262.
6
Spatiotemporal neuronal correlates of seizure generation in focal epilepsy.
Epilepsia. 2012 May;53(5):807-16. doi: 10.1111/j.1528-1167.2012.03417.x. Epub 2012 Feb 21.
7
The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials.
Brain. 2012 Jul;135(Pt 7):2263-76. doi: 10.1093/brain/aws134. Epub 2012 Jun 17.
8
Ictal high frequency oscillations distinguish two types of seizure territories in humans.
Brain. 2013 Dec;136(Pt 12):3796-808. doi: 10.1093/brain/awt276. Epub 2013 Oct 30.
10
Single-unit activities during the transition to seizures in deep mesial structures.
Ann Neurol. 2017 Dec;82(6):1022-1028. doi: 10.1002/ana.25111. Epub 2017 Dec 15.

引用本文的文献

2
Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition.
Neuron. 2025 Mar 19;113(6):858-875.e10. doi: 10.1016/j.neuron.2024.12.026. Epub 2025 Jan 20.
4
Cellular resolution contributions to ictal population signals.
Epilepsia. 2024 Jul;65(7):2165-2178. doi: 10.1111/epi.17983. Epub 2024 May 16.
5
Glioma-Induced Alterations in Excitatory Neurons are Reversed by mTOR Inhibition.
bioRxiv. 2024 Jan 21:2024.01.10.575092. doi: 10.1101/2024.01.10.575092.
6
Cell-type specific and multiscale dynamics of human focal seizures in limbic structures.
Brain. 2023 Dec 1;146(12):5209-5223. doi: 10.1093/brain/awad262.
7
Seizure onset patterns predict outcome after stereo-electroencephalography-guided laser amygdalohippocampotomy.
Epilepsia. 2023 Jun;64(6):1568-1581. doi: 10.1111/epi.17602. Epub 2023 Apr 24.
9
Involvement of GABAergic Interneuron Subtypes in 4-Aminopyridine-Induced Seizure-Like Events in Mouse Entorhinal Cortex .
J Neurosci. 2023 Mar 15;43(11):1987-2001. doi: 10.1523/JNEUROSCI.1190-22.2023. Epub 2023 Feb 21.

本文引用的文献

1
A model for focal seizure onset, propagation, evolution, and progression.
Elife. 2020 Mar 23;9:e50927. doi: 10.7554/eLife.50927.
3
Divergent paths to seizure-like events.
Physiol Rep. 2019 Oct;7(19):e14226. doi: 10.14814/phy2.14226.
4
Role of paroxysmal depolarization in focal seizure activity.
J Neurophysiol. 2019 Nov 1;122(5):1861-1873. doi: 10.1152/jn.00392.2019. Epub 2019 Aug 28.
5
Extracellular Spike Waveform Dissociates Four Functionally Distinct Cell Classes in Primate Cortex.
Curr Biol. 2019 Sep 23;29(18):2973-2982.e5. doi: 10.1016/j.cub.2019.07.051. Epub 2019 Aug 22.
6
Multiscale recordings reveal the dynamic spatial structure of human seizures.
Neurobiol Dis. 2019 Jul;127:303-311. doi: 10.1016/j.nbd.2019.03.015. Epub 2019 Mar 18.
8
"Interneurons and principal cell firing in human limbic areas at focal seizure onset".
Neurobiol Dis. 2019 Apr;124:183-188. doi: 10.1016/j.nbd.2018.11.014. Epub 2018 Nov 22.
9
Cell Densities in the Mouse Brain: A Systematic Review.
Front Neuroanat. 2018 Oct 23;12:83. doi: 10.3389/fnana.2018.00083. eCollection 2018.
10
Altered hippocampal interneuron activity precedes ictal onset.
Elife. 2018 Nov 2;7:e40750. doi: 10.7554/eLife.40750.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验