Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), 28006 Madrid, Spain;
Meteorological Synthesizing Centre-East of EMEP, 115419 Moscow, Russia;
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):30949-30956. doi: 10.1073/pnas.1922486117. Epub 2020 Nov 23.
Mercury (Hg), a global contaminant, is emitted mainly in its elemental form Hg to the atmosphere where it is oxidized to reactive Hg compounds, which efficiently deposit to surface ecosystems. Therefore, the chemical cycling between the elemental and oxidized Hg forms in the atmosphere determines the scale and geographical pattern of global Hg deposition. Recent advances in the photochemistry of gas-phase oxidized Hg and Hg species postulate their photodissociation back to Hg as a crucial step in the atmospheric Hg redox cycle. However, the significance of these photodissociation mechanisms on atmospheric Hg chemistry, lifetime, and surface deposition remains uncertain. Here we implement a comprehensive and quantitative mechanism of the photochemical and thermal atmospheric reactions between Hg, Hg, and Hg species in a global model and evaluate the results against atmospheric Hg observations. We find that the photochemistry of Hg and Hg leads to insufficient Hg oxidation globally. The combined efficient photoreduction of Hg and Hg to Hg competes with thermal oxidation of Hg, resulting in a large model overestimation of 99% of measured Hg and underestimation of 51% of oxidized Hg and ∼66% of Hg wet deposition. This in turn leads to a significant increase in the calculated global atmospheric Hg lifetime of 20 mo, which is unrealistically longer than the 3-6-mo range based on observed atmospheric Hg variability. These results show that the Hg and Hg photoreduction processes largely offset the efficiency of bromine-initiated Hg oxidation and reveal missing Hg oxidation processes in the troposphere.
汞(Hg)是一种全球性污染物,主要以元素汞(Hg)的形式排放到大气中,在大气中被氧化为反应性的汞化合物,这些化合物有效地沉积到地表生态系统中。因此,大气中元素汞和氧化态汞之间的化学循环决定了全球汞沉积的规模和地理格局。最近,气相氧化态汞和汞物种的光化学研究提出,它们光解回到汞是大气汞氧化还原循环中的一个关键步骤。然而,这些光解机制对大气汞化学、寿命和表面沉积的重要性仍然不确定。在这里,我们在一个全球模型中实施了汞、氧化汞和汞物种之间光化学和热大气反应的综合和定量机制,并根据大气汞观测结果对结果进行了评估。我们发现,汞和氧化汞的光化学反应导致全球汞氧化不足。Hg 和 Hg 的联合有效光还原与 Hg 的热氧化竞争,导致模型对 99%的测量 Hg 和 51%的氧化 Hg 和∼66%的 Hg 湿沉积的过高估计。这反过来又导致计算出的全球大气汞寿命显著增加了 20 个月,这与基于大气汞可变性观察到的 3-6 个月的范围相比,时间长得不切实际。这些结果表明,Hg 和 Hg 的光还原过程在很大程度上抵消了溴引发的 Hg 氧化效率,并且揭示了对流层中缺失的 Hg 氧化过程。