Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, 28006, Spain.
Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center (DIPC), P.K. 1072, Euskadi, 20080, Donostia, Spain.
Nat Commun. 2018 Nov 15;9(1):4796. doi: 10.1038/s41467-018-07075-3.
Anthropogenic mercury (Hg(0)) emissions oxidize to gaseous Hg(II) compounds, before deposition to Earth surface ecosystems. Atmospheric reduction of Hg(II) competes with deposition, thereby modifying the magnitude and pattern of Hg deposition. Global Hg models have postulated that Hg(II) reduction in the atmosphere occurs through aqueous-phase photoreduction that may take place in clouds. Here we report that experimental rainfall Hg(II) photoreduction rates are much slower than modelled rates. We compute absorption cross sections of Hg(II) compounds and show that fast gas-phase Hg(II) photolysis can dominate atmospheric mercury reduction and lead to a substantial increase in the modelled, global atmospheric Hg lifetime by a factor two. Models with Hg(II) photolysis show enhanced Hg(0) deposition to land, which may prolong recovery of aquatic ecosystems long after Hg emissions are lowered, due to the longer residence time of Hg in soils compared with the ocean. Fast Hg(II) photolysis substantially changes atmospheric Hg dynamics and requires further assessment at regional and local scales.
人为汞(Hg(0))排放会氧化为气态 Hg(II)化合物,然后沉积到地球表面生态系统中。大气中 Hg(II)的还原与沉积竞争,从而改变 Hg 沉积的幅度和模式。全球 Hg 模型假设大气中的 Hg(II)还原是通过可能发生在云中的水相光还原来实现的。在这里,我们报告实验降雨 Hg(II)光还原速率比模型速率慢得多。我们计算了 Hg(II)化合物的吸收截面,并表明快速的气相 Hg(II)光解可以主导大气汞还原,导致模型中全球大气 Hg 寿命延长两倍。有 Hg(II)光解的模型显示 Hg(0)向陆地的沉积增加,这可能会延长水生生态系统的恢复时间,因为与海洋相比,Hg 在土壤中的停留时间更长。快速 Hg(II)光解会大大改变大气 Hg 的动态,需要在区域和地方尺度上进一步评估。