Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089;
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31470-31481. doi: 10.1073/pnas.2017733117. Epub 2020 Nov 23.
The forebrain is the first of three primary vertebrate brain subdivisions. Macrolevel network analysis in a mammal (rat) revealed that the 466 gray matter regions composing the right and left sides of the forebrain are interconnected by 35,738 axonal connections forming a large set of overlapping, hierarchically arranged subsystems. This hierarchy is bilaterally symmetrical and sexually dimorphic, and it was used to create a structure-function conceptual model of intraforebrain network organization. Two mirror image top-level subsystems are presumably the most fundamental ontogenetically and phylogenetically. They essentially form the right and left forebrain halves and are relatively weakly interconnected. Each top-level subsystem in turn has two second-level subsystems. A ventromedial subsystem includes the medial forebrain bundle, functionally coordinating instinctive survival behaviors with appropriate physiological responses and affect. This subsystem has 26/24 (female/male) lowest-level subsystems, all using a combination of glutamate and GABA as neurotransmitters. In contrast, a dorsolateral subsystem includes the lateral forebrain bundle, functionally mediating voluntary behavior and cognition. This subsystem has 20 lowest-level subsystems, and all but 4 use glutamate exclusively for their macroconnections; no forebrain subsystems are exclusively GABAergic. Bottom-up subsystem analysis is a powerful engine for generating testable hypotheses about mechanistic explanations of brain function, behavior, and mind based on underlying circuit organization. Targeted computational (virtual) lesioning of specific regions of interest associated with Alzheimer's disease, clinical depression, and other disorders may begin to clarify how the effects spread through the entire forebrain network model.
前脑是三个主要的脊椎动物脑区之一。在哺乳动物(大鼠)中进行的宏观网络分析显示,组成左右前脑的 466 个灰质区域通过 35738 个轴突连接相互连接,形成了一大组重叠的、层次化的子系统。这个层次结构是双侧对称的和性别二态的,它被用来创建一个前脑网络组织的结构-功能概念模型。两个镜像的顶级子系统可能是最基本的胚胎发生和进化上的。它们基本上形成了左右前脑的两半,并且相互连接较弱。每个顶级子系统又有两个二级子系统。一个腹侧子系统包括内侧前脑束,它在功能上协调本能的生存行为与适当的生理反应和情感。这个子系统有 26/24 个(女性/男性)最低级别的子系统,都使用谷氨酸和 GABA 作为神经递质。相比之下,一个背外侧子系统包括外侧前脑束,它在功能上调节自愿行为和认知。这个子系统有 20 个最低级别的子系统,除了 4 个之外,所有的子系统都只使用谷氨酸作为它们的宏观连接;没有前脑子系统是完全 GABA 能的。自下而上的子系统分析是一个强大的引擎,可以根据潜在的电路组织,产生关于大脑功能、行为和思维的机械解释的可测试假设。针对与阿尔茨海默病、临床抑郁症和其他疾病相关的特定感兴趣区域的靶向计算(虚拟)损伤,可能开始阐明这些影响如何在整个前脑网络模型中传播。