School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Program in Applied Mathematics, Yale University, New Haven, CT 06520.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):30918-30927. doi: 10.1073/pnas.2014627117. Epub 2020 Nov 23.
We propose a local conformal autoencoder (LOCA) for standardized data coordinates. LOCA is a deep learning-based method for obtaining standardized data coordinates from scientific measurements. Data observations are modeled as samples from an unknown, nonlinear deformation of an underlying Riemannian manifold, which is parametrized by a few normalized, latent variables. We assume a repeated measurement sampling strategy, common in scientific measurements, and present a method for learning an embedding in [Formula: see text] that is isometric to the latent variables of the manifold. The coordinates recovered by our method are invariant to diffeomorphisms of the manifold, making it possible to match between different instrumental observations of the same phenomenon. Our embedding is obtained using LOCA, which is an algorithm that learns to rectify deformations by using a local z-scoring procedure, while preserving relevant geometric information. We demonstrate the isometric embedding properties of LOCA in various model settings and observe that it exhibits promising interpolation and extrapolation capabilities, superior to the current state of the art. Finally, we demonstrate LOCA's efficacy in single-site Wi-Fi localization data and for the reconstruction of three-dimensional curved surfaces from two-dimensional projections.
我们提出了一种用于标准化数据坐标的局部共形自动编码器(LOCA)。LOCA 是一种基于深度学习的方法,用于从科学测量中获得标准化数据坐标。数据观测被建模为来自未知的、非线性变形的底层黎曼流形的样本,该流形由几个归一化的、潜在的变量参数化。我们假设了一种常见于科学测量的重复测量采样策略,并提出了一种在 [公式:见文本] 中学习嵌入的方法,该嵌入与流形的潜在变量等距。我们方法恢复的坐标对流形的微分同胚不变,使得可以在同一现象的不同仪器观测之间进行匹配。我们的嵌入是使用 LOCA 获得的,LOCA 是一种通过使用局部 z 得分过程来学习校正变形的算法,同时保留相关的几何信息。我们在各种模型设置中展示了 LOCA 的等距嵌入特性,并观察到它表现出有前途的插值和外推能力,优于当前的最先进水平。最后,我们展示了 LOCA 在单站点 Wi-Fi 定位数据中的有效性,以及从二维投影重建三维曲面。