Suppr超能文献

LDLE:低失真局部特征映射

LDLE: Low Distortion Local Eigenmaps.

作者信息

Kohli Dhruv, Cloninger Alexander, Mishne Gal

机构信息

Department of Mathematics, University of California San Diego, CA 92093, USA.

Halicioğlu Data Science Institute, University of California San Diego, CA 92093, USA.

出版信息

J Mach Learn Res. 2021 Jan-Dec;22.

Abstract

We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a data set in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors may vary across the regions. In contrast to existing techniques, LDLE can embed closed and non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides gluing instruction on the boundary of the torn embedding to help identify the topology of the original manifold. Our experimental results will show that LDLE largely preserved distances up to a constant scale while other techniques produced higher distortion. We also demonstrate that LDLE produces high quality embeddings even when the data is noisy or sparse.

摘要

我们提出了低失真局部特征映射(LDLE),这是一种流形学习技术,它在低维空间中构建数据集的一组低失真局部视图,并将它们对齐以获得全局嵌入。局部视图使用图拉普拉斯算子的全局特征向量构建,并使用普罗克汝斯分析进行对齐。这些特征向量的选择可能因区域而异。与现有技术相比,LDLE可以通过将封闭和不可定向流形撕开,将它们嵌入到其固有维度中。它还在撕开的嵌入边界上提供粘合指令,以帮助识别原始流形的拓扑结构。我们的实验结果将表明,LDLE在恒定尺度下很大程度上保留了距离,而其他技术产生的失真更高。我们还证明,即使数据有噪声或稀疏,LDLE也能产生高质量的嵌入。

相似文献

1
LDLE: Low Distortion Local Eigenmaps.
J Mach Learn Res. 2021 Jan-Dec;22.
2
Manifold learning for fMRI time-varying functional connectivity.
Front Hum Neurosci. 2023 Jul 11;17:1134012. doi: 10.3389/fnhum.2023.1134012. eCollection 2023.
3
Using manifold learning for atlas selection in multi-atlas segmentation.
PLoS One. 2013 Aug 2;8(8):e70059. doi: 10.1371/journal.pone.0070059. Print 2013.
4
Laplacian embedded regression for scalable manifold regularization.
IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):902-15. doi: 10.1109/TNNLS.2012.2190420.
6
An Out-of-Sample Extension to Manifold Learning via Meta-Modelling.
IEEE Trans Image Process. 2019 May 15. doi: 10.1109/TIP.2019.2915162.
7
Manifold Learning for fMRI time-varying FC.
bioRxiv. 2023 Jan 16:2023.01.14.523992. doi: 10.1101/2023.01.14.523992.
8
Depth Restoration From RGB-D Data via Joint Adaptive Regularization and Thresholding on Manifolds.
IEEE Trans Image Process. 2019 Mar;28(3):1068-1079. doi: 10.1109/TIP.2018.2872175. Epub 2018 Sep 27.
9
Supervised embedding of textual predictors with applications in clinical diagnostics for pediatric cardiology.
J Am Med Inform Assoc. 2014 Feb;21(e1):e136-42. doi: 10.1136/amiajnl-2013-001792. Epub 2013 Sep 27.
10
Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets.
IEEE Trans Image Process. 2018;27(1):151-163. doi: 10.1109/TIP.2017.2746993.

引用本文的文献

1
Applications and Comparison of Dimensionality Reduction Methods for Microbiome Data.
Front Bioinform. 2022 Feb 24;2:821861. doi: 10.3389/fbinf.2022.821861. eCollection 2022.

本文引用的文献

1
Spectral Embedding Norm: Looking Deep into the Spectrum of the Graph Laplacian.
SIAM J Imaging Sci. 2020;13(2):1015-1048. doi: 10.1137/18m1283160. Epub 2020 Jun 30.
2
Initialization is critical for preserving global data structure in both t-SNE and UMAP.
Nat Biotechnol. 2021 Feb;39(2):156-157. doi: 10.1038/s41587-020-00809-z. Epub 2021 Feb 1.
3
Local conformal autoencoder for standardized data coordinates.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):30918-30927. doi: 10.1073/pnas.2014627117. Epub 2020 Nov 23.
4
Principal component analysis: a review and recent developments.
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202. doi: 10.1098/rsta.2015.0202.
5
Anomaly Detection and Artifact Recovery in PET Attenuation-Correction Images Using the Likelihood Function.
IEEE J Sel Top Signal Process. 2013 Feb;7(1). doi: 10.1109/JSTSP.2012.2237380.
6
Orientability and Diffusion Maps.
Appl Comput Harmon Anal. 2011 Jul;31(1):44-58. doi: 10.1016/j.acha.2010.10.001.
7
Nonlinear dimensionality reduction by locally linear embedding.
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.
8
A global geometric framework for nonlinear dimensionality reduction.
Science. 2000 Dec 22;290(5500):2319-23. doi: 10.1126/science.290.5500.2319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验