Suppr超能文献

LDLE:低失真局部特征映射

LDLE: Low Distortion Local Eigenmaps.

作者信息

Kohli Dhruv, Cloninger Alexander, Mishne Gal

机构信息

Department of Mathematics, University of California San Diego, CA 92093, USA.

Halicioğlu Data Science Institute, University of California San Diego, CA 92093, USA.

出版信息

J Mach Learn Res. 2021 Jan-Dec;22.

Abstract

We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a data set in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors may vary across the regions. In contrast to existing techniques, LDLE can embed closed and non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides gluing instruction on the boundary of the torn embedding to help identify the topology of the original manifold. Our experimental results will show that LDLE largely preserved distances up to a constant scale while other techniques produced higher distortion. We also demonstrate that LDLE produces high quality embeddings even when the data is noisy or sparse.

摘要

我们提出了低失真局部特征映射(LDLE),这是一种流形学习技术,它在低维空间中构建数据集的一组低失真局部视图,并将它们对齐以获得全局嵌入。局部视图使用图拉普拉斯算子的全局特征向量构建,并使用普罗克汝斯分析进行对齐。这些特征向量的选择可能因区域而异。与现有技术相比,LDLE可以通过将封闭和不可定向流形撕开,将它们嵌入到其固有维度中。它还在撕开的嵌入边界上提供粘合指令,以帮助识别原始流形的拓扑结构。我们的实验结果将表明,LDLE在恒定尺度下很大程度上保留了距离,而其他技术产生的失真更高。我们还证明,即使数据有噪声或稀疏,LDLE也能产生高质量的嵌入。

相似文献

2
Manifold learning for fMRI time-varying functional connectivity.用于功能磁共振成像时变功能连接的流形学习
Front Hum Neurosci. 2023 Jul 11;17:1134012. doi: 10.3389/fnhum.2023.1134012. eCollection 2023.
4
Laplacian embedded regression for scalable manifold regularization.拉普拉斯嵌入回归的可扩展流形正则化。
IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):902-15. doi: 10.1109/TNNLS.2012.2190420.
7
Manifold Learning for fMRI time-varying FC.用于功能磁共振成像时变功能连接的流形学习
bioRxiv. 2023 Jan 16:2023.01.14.523992. doi: 10.1101/2023.01.14.523992.

引用本文的文献

1
Applications and Comparison of Dimensionality Reduction Methods for Microbiome Data.微生物组数据降维方法的应用与比较
Front Bioinform. 2022 Feb 24;2:821861. doi: 10.3389/fbinf.2022.821861. eCollection 2022.

本文引用的文献

3
Local conformal autoencoder for standardized data coordinates.用于标准化数据坐标的局部一致自编码器。
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):30918-30927. doi: 10.1073/pnas.2014627117. Epub 2020 Nov 23.
4
Principal component analysis: a review and recent developments.主成分分析:综述与最新进展
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202. doi: 10.1098/rsta.2015.0202.
6
Orientability and Diffusion Maps.可定向性与扩散映射
Appl Comput Harmon Anal. 2011 Jul;31(1):44-58. doi: 10.1016/j.acha.2010.10.001.
7
Nonlinear dimensionality reduction by locally linear embedding.通过局部线性嵌入进行非线性降维
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验