Suppr超能文献

沿着进化轨迹改变构象采样会改变酶的催化活性。

Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme.

机构信息

Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.

出版信息

Nat Commun. 2020 Nov 23;11(1):5945. doi: 10.1038/s41467-020-19695-9.

Abstract

Several enzymes are known to have evolved from non-catalytic proteins such as solute-binding proteins (SBPs). Although attention has been focused on how a binding site can evolve to become catalytic, an equally important question is: how do the structural dynamics of a binding protein change as it becomes an efficient enzyme? Here we performed a variety of experiments, including propargyl-DO3A-Gd(III) tagging and double electron-electron resonance (DEER) to study the rigid body protein dynamics of reconstructed evolutionary intermediates to determine how the conformational sampling of a protein changes along an evolutionary trajectory linking an arginine SBP to a cyclohexadienyl dehydratase (CDT). We observed that primitive dehydratases predominantly populate catalytically unproductive conformations that are vestiges of their ancestral SBP function. Non-productive conformational states, including a wide-open state, are frozen out of the conformational landscape via remote mutations, eventually leading to extant CDT that exclusively samples catalytically relevant compact states. These results show that remote mutations can reshape the global conformational landscape of an enzyme as a mechanism for increasing catalytic activity.

摘要

已知几种酶是从非催化蛋白(如溶质结合蛋白,SBPs)进化而来的。尽管人们一直关注的是结合位点如何进化成具有催化活性,但同样重要的问题是:作为一个有效的酶,结合蛋白的结构动力学如何随着其变化而变化?在这里,我们进行了各种实验,包括炔丙基-DO3A-Gd(III)标记和双电子电子共振(DEER),以研究重构进化中间体的刚体蛋白动力学,以确定随着将精氨酸 SBP 连接到环己二烯脱水酶(CDT)的进化轨迹,蛋白质的构象采样如何变化。我们观察到原始脱水酶主要存在于无催化活性的构象中,这些构象是其祖先 SBP 功能的残余。非生产性构象状态,包括大开状态,通过远程突变被冻结在构象景观之外,最终导致仅采样相关紧凑状态的现有 CDT。这些结果表明,远程突变可以重塑酶的全局构象景观,作为提高催化活性的一种机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/286e/7683729/3c48e12a66cc/41467_2020_19695_Fig1_HTML.jpg

相似文献

2
Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein.
Nat Chem Biol. 2018 Jun;14(6):542-547. doi: 10.1038/s41589-018-0043-2. Epub 2018 Apr 23.
5
Conformational dynamics and enzyme evolution.
J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0330.
6
Molecular dynamics explorations of active site structure in designed and evolved enzymes.
Acc Chem Res. 2015 Apr 21;48(4):1080-9. doi: 10.1021/ar500452q. Epub 2015 Mar 4.
7
How directed evolution reshapes the energy landscape in an enzyme to boost catalysis.
Science. 2020 Dec 18;370(6523):1442-1446. doi: 10.1126/science.abd3623. Epub 2020 Nov 19.
8
Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum.
Arch Microbiol. 2004 Mar;181(3):237-44. doi: 10.1007/s00203-004-0649-5. Epub 2004 Jan 21.
9
The evolution and engineering of enzyme activity through tuning conformational landscapes.
Protein Eng Des Sel. 2021 Feb 15;34. doi: 10.1093/protein/gzab009.
10
The role of protein dynamics in the evolution of new enzyme function.
Nat Chem Biol. 2016 Nov;12(11):944-950. doi: 10.1038/nchembio.2175. Epub 2016 Sep 12.

引用本文的文献

1
Protein Modeling with DEER Spectroscopy.
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.
2
Rugged fitness landscapes minimize promiscuity in the evolution of transcriptional repressors.
Cell Syst. 2024 Apr 17;15(4):374-387.e6. doi: 10.1016/j.cels.2024.03.002. Epub 2024 Mar 26.
3
Ancestral Reconstruction and the Evolution of Protein Energy Landscapes.
Annu Rev Biophys. 2024 Jul;53(1):127-146. doi: 10.1146/annurev-biophys-030722-125440. Epub 2024 Jun 28.
4
Computational remodeling of an enzyme conformational landscape for altered substrate selectivity.
Nat Commun. 2023 Sep 28;14(1):6058. doi: 10.1038/s41467-023-41762-0.
5
Distal Mutations Shape Substrate-Binding Sites during Evolution of a Metallo-Oxidase into a Laccase.
ACS Catal. 2022 May 6;12(9):5022-5035. doi: 10.1021/acscatal.2c00336. Epub 2022 Apr 13.
6
Enzymatic Conjugation of Modified RNA Fragments by Ancestral RNA Ligase AncT4_2.
Appl Environ Microbiol. 2022 Dec 13;88(23):e0167922. doi: 10.1128/aem.01679-22. Epub 2022 Nov 23.
9
Targeting protein conformations with small molecules to control protein complexes.
Trends Biochem Sci. 2022 Dec;47(12):1023-1037. doi: 10.1016/j.tibs.2022.07.002. Epub 2022 Aug 16.

本文引用的文献

1
Single-Molecule Observation of Ligand Binding and Conformational Changes in FeuA.
Biophys J. 2019 Nov 5;117(9):1642-1654. doi: 10.1016/j.bpj.2019.08.005. Epub 2019 Aug 12.
4
OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules.
J Chem Theory Comput. 2019 Mar 12;15(3):1863-1874. doi: 10.1021/acs.jctc.8b01026. Epub 2019 Mar 4.
5
Mutant T4 DNA polymerase for easy cloning and mutagenesis.
PLoS One. 2019 Jan 23;14(1):e0211065. doi: 10.1371/journal.pone.0211065. eCollection 2019.
6
Hidden Conformations in Aspergillus niger Monoamine Oxidase are Key for Catalytic Efficiency.
Angew Chem Int Ed Engl. 2019 Mar 4;58(10):3097-3101. doi: 10.1002/anie.201812532. Epub 2019 Jan 24.
7
Structural Characterization of Biomolecules through Atomistic Simulations Guided by DEER Measurements.
Structure. 2019 Feb 5;27(2):359-370.e12. doi: 10.1016/j.str.2018.10.013. Epub 2018 Dec 6.
8
The evolution of multiple active site configurations in a designed enzyme.
Nat Commun. 2018 Sep 25;9(1):3900. doi: 10.1038/s41467-018-06305-y.
9
Small neutral Gd(iii) tags for distance measurements in proteins by double electron-electron resonance experiments.
Phys Chem Chem Phys. 2018 Sep 19;20(36):23535-23545. doi: 10.1039/c8cp03532f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验