Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA.
Department of Pediatrics-Genetics, Stanford University, Stanford, CA, USA.
Sci Rep. 2020 Nov 23;10(1):20392. doi: 10.1038/s41598-020-77274-w.
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the FBN1 gene that produces wide disease phenotypic variability. The lack of ample genotype-phenotype correlation hinders translational study development aimed at improving disease prognosis. In response to this need, an induced pluripotent stem cell (iPSC) disease model has been used to test patient-specific cells by a proteomic approach. This model has the potential to risk stratify patients to make clinical decisions, including timing for surgical treatment. The regional propensity for aneurysm formation in MFS may be related to distinct smooth muscle cell (SMC) embryologic lineages. Thus, peripheral blood mononuclear cell (PBMC)-derived induced pluripotent stem cells (iPSC) were differentiated into lateral mesoderm (LM, aortic root) and neural crest (NC, ascending aorta/transverse arch) SMC lineages to model MFS aortic pathology. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteomic analysis by tandem mass spectrometry was applied to profile LM and NC iPSC SMCs from four MFS patients and two healthy controls. Analysis revealed 45 proteins with lineage-dependent expression in MFS patients, many of which were specific to diseased samples. Single protein-level data from both iPSC SMCs and primary MFS aortic root aneurysm tissue confirmed elevated integrin αV and reduced MRC2 in clinical disease specimens, validating the iPSC iTRAQ findings. Functionally, iPSC SMCs exhibited defective adhesion to a variety of extracellular matrix proteins, especially laminin-1 and fibronectin, suggesting altered cytoskeleton dynamics. This study defines the aortic embryologic origin-specific proteome in a validated iPSC SMC model to identify novel protein markers associated with MFS aneurysm phenotype. Translating iPSC findings into clinical aortic aneurysm tissue samples highlights the potential for iPSC-based methods to model MFS disease for mechanistic studies and therapeutic discovery in vitro.
马凡综合征(MFS)是一种由 FBN1 基因突变引起的结缔组织疾病,导致广泛的疾病表型变异性。基因型-表型相关性不足阻碍了旨在改善疾病预后的转化研究的发展。为了满足这一需求,已经使用诱导多能干细胞(iPSC)疾病模型通过蛋白质组学方法测试患者特异性细胞。该模型有可能对患者进行风险分层,以做出临床决策,包括手术治疗的时机。MFS 中动脉瘤形成的区域性倾向可能与独特的平滑肌细胞(SMC)胚胎谱系有关。因此,外周血单核细胞(PBMC)衍生的诱导多能干细胞(iPSC)被分化为侧中胚层(LM,主动脉根部)和神经嵴(NC,升主动脉/横弓)SMC 谱系,以模拟 MFS 主动脉病理学。通过串联质谱法应用等压标签相对和绝对定量(iTRAQ)蛋白质组学分析来分析来自四名 MFS 患者和两名健康对照者的 LM 和 NC iPSC SMC。分析显示,在 MFS 患者中,有 45 种蛋白质具有谱系依赖性表达,其中许多蛋白质是疾病样本特有的。来自 iPSC SMC 和原发性 MFS 主动脉根部动脉瘤组织的单个蛋白质水平数据证实,在临床疾病标本中整合素αV 升高,MRC2 降低,验证了 iPSC iTRAQ 发现。功能上,iPSC SMC 表现出对各种细胞外基质蛋白的粘附缺陷,特别是层粘连蛋白-1 和纤维连接蛋白,表明细胞骨架动力学发生改变。这项研究在经过验证的 iPSC SMC 模型中定义了主动脉胚胎起源特异性蛋白质组,以确定与 MFS 动脉瘤表型相关的新型蛋白质标志物。将 iPSC 发现转化为临床主动脉动脉瘤组织样本突出了基于 iPSC 的方法在体外对 MFS 疾病进行机制研究和治疗发现的潜力。