Department of Mathematical Sciences, Indiana University South Bend, South Bend, Indiana, USA.
Stat Med. 2021 Feb 10;40(3):758-778. doi: 10.1002/sim.8801. Epub 2020 Nov 23.
Maximum approximate Bernstein likelihood estimates of the baseline density function and the regression coefficients in the proportional hazard regression models based on interval-censored event time data result in smooth estimates of the survival functions which enjoys an almost n -rate of convergence faster than the n -rate for the existing estimates. The proposed method was shown by a simulation to have better finite sample performance than its main competitors. Some examples including real data are used to illustrate the usage of the proposed method.
基于区间删失事件时间数据的比例风险回归模型中基线密度函数和回归系数的最大近似伯恩斯坦似然估计,会得到生存函数的平滑估计,其收敛速度几乎比现有估计快 n 倍。通过模拟表明,所提出的方法在有限样本性能方面优于其主要竞争对手。一些包括真实数据的示例用于说明所提出的方法的使用。