Suppr超能文献

带有区间 censoring 的生存数据比例风险模型的惩罚似然估计。

Penalized likelihood estimation of the proportional hazards model for survival data with interval censoring.

机构信息

Department of Mathematics and Statistics, Macquarie University, Sydney, Australia.

Cancer Research UK - Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, UK.

出版信息

Int J Biostat. 2021 Oct 27;18(2):553-575. doi: 10.1515/ijb-2020-0104. eCollection 2022 Nov 1.

Abstract

This paper considers the problem of semi-parametric proportional hazards model fitting where observed survival times contain event times and also interval, left and right censoring times. Although this is not a new topic, many existing methods suffer from poor computational performance. In this paper, we adopt a more versatile penalized likelihood method to estimate the baseline hazard and the regression coefficients simultaneously. The baseline hazard is approximated using basis functions such as M-splines. A penalty is introduced to regularize the baseline hazard estimate and also to ease dependence of the estimates on the knots of the basis functions. We propose a Newton-MI (multiplicative iterative) algorithm to fit this model. We also present novel asymptotic properties of our estimates, allowing for the possibility that some parameters of the approximate baseline hazard may lie on the parameter space boundary. Comparisons of our method against other similar approaches are made through an intensive simulation study. Results demonstrate that our method is very stable and encounters virtually no numerical issues. A real data application involving melanoma recurrence is presented and an R package 'survivalMPL' implementing the method is available on R CRAN.

摘要

本文考虑了含有事件时间和区间、左截断和右截断时间的半参数比例风险模型拟合问题。虽然这不是一个新的主题,但许多现有的方法都存在计算性能差的问题。在本文中,我们采用了一种更通用的惩罚似然方法来同时估计基线风险和回归系数。基线风险使用 M 样条等基函数进行近似。引入一个惩罚项来正则化基线风险估计,同时减轻估计值对基函数节点的依赖性。我们提出了一种牛顿-MI(乘法迭代)算法来拟合这个模型。我们还提出了我们的估计的新的渐近性质,允许近似基线风险的某些参数可能位于参数空间边界上的可能性。通过密集的模拟研究对我们的方法与其他类似方法进行了比较。结果表明,我们的方法非常稳定,几乎没有遇到任何数值问题。本文还介绍了一个涉及黑色素瘤复发的真实数据应用,并在 R CRAN 上提供了一个实现该方法的 R 包“survivalMPL”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验