Suppr超能文献

[使用时间相依威布尔比例风险模型对部分区间删失数据进行生存分析的参数估计]

[Parameter estimation using time-dependent Weibull proportional hazards model for survival analysis with partly interval censored data].

作者信息

Wang Shuying, Liu Xinyu, Li Rundong, Li Yang

机构信息

School of Mathematics and Statistics, Changchun University of Technology, Changchun 130000, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2024 Dec 20;44(12):2461-2468. doi: 10.12122/j.issn.1673-4254.2024.12.23.

Abstract

: To assess the validity and effectiveness of parameter estimation using a time-dependent Weibull proportional hazards model for survival analysis containing partly interval censored data and explore the impact of different covariates on the results of analysis. : We established a time-dependent Weibull proportional hazards model using the Weibull distribution as the baseline hazard function of the model which incorporated time-varying covariates. Maximum likelihood estimation was employed to estimate the model parameters, which were obtained by optimization of the likelihood function. : Numerical simulation results showed that with higher proportions of precise observations across different sample sizes and parameter settings, the proposed model resulted in improved accuracy of parameter estimation with coverage probabilities approximating the theoretical expectation of 95%. As the sample sizes increased, the parameter biases of the model tended to decrease. Experiments with empirical data further validated the effectiveness of the model. Compared with the failure time data for each precisely observed individual, additional interval-censored data helped to obtain more effective estimates of the regression parameters. Comparison with the Cox model that included time-varying covariates further demonstrated the effectiveness of the time-dependent Weibull proportional hazards model for parameter estimation in survival analysis with partly interval censored data.

摘要

评估使用时间相依威布尔比例风险模型进行含部分区间删失数据的生存分析时参数估计的有效性和效果,并探讨不同协变量对分析结果的影响。:我们以威布尔分布作为模型的基线风险函数,建立了一个纳入时变协变量的时间相依威布尔比例风险模型。采用最大似然估计来估计模型参数,这些参数通过似然函数的优化获得。:数值模拟结果表明,在不同样本量和参数设置下,精确观测比例越高,所提出的模型参数估计精度提高,覆盖概率接近理论期望的95%。随着样本量增加,模型的参数偏差趋于减小。实证数据实验进一步验证了该模型的有效性。与每个精确观测个体的失效时间数据相比,额外的区间删失数据有助于获得更有效的回归参数估计。与包含时变协变量的Cox模型比较,进一步证明了时间相依威布尔比例风险模型在含部分区间删失数据的生存分析中进行参数估计的有效性。

相似文献

1
[Parameter estimation using time-dependent Weibull proportional hazards model for survival analysis with partly interval censored data].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Dec 20;44(12):2461-2468. doi: 10.12122/j.issn.1673-4254.2024.12.23.
2
Cox models with time-varying covariates and partly-interval censoring-A maximum penalised likelihood approach.
Stat Med. 2023 Mar 15;42(6):815-833. doi: 10.1002/sim.9645. Epub 2022 Dec 30.
4
Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data.
Lifetime Data Anal. 2020 Oct;26(4):708-730. doi: 10.1007/s10985-020-09496-z. Epub 2020 Mar 10.
5
A double-Cox model for non-proportional hazards survival analysis with frailty.
Stat Med. 2023 Aug 15;42(18):3114-3127. doi: 10.1002/sim.9760. Epub 2023 May 15.
6
Comparison of different parametric proportional hazards models for interval-censored data: a simulation study.
Contemp Clin Trials. 2013 Sep;36(1):276-83. doi: 10.1016/j.cct.2013.07.012. Epub 2013 Aug 3.
8
A semiparametric mixture model approach for regression analysis of partly interval-censored data with a cured subgroup.
Stat Methods Med Res. 2021 Aug;30(8):1890-1903. doi: 10.1177/09622802211023985. Epub 2021 Jul 1.
9
[Semiparametric analysis of nonparametric proportional hazards models with mixed dependent censored data].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Apr 20;44(4):689-696. doi: 10.12122/j.issn.1673-4254.2024.04.10.
10
Estimation in the cox proportional hazards model with left-truncated and interval-censored data.
Biometrics. 2002 Mar;58(1):64-70. doi: 10.1111/j.0006-341x.2002.00064.x.

本文引用的文献

1
Cox models with time-varying covariates and partly-interval censoring-A maximum penalised likelihood approach.
Stat Med. 2023 Mar 15;42(6):815-833. doi: 10.1002/sim.9645. Epub 2022 Dec 30.
2
On maximum likelihood estimation of the semi-parametric Cox model with time-varying covariates.
J Appl Stat. 2019 Oct 31;47(9):1511-1528. doi: 10.1080/02664763.2019.1681946. eCollection 2020.
5
Maximum approximate Bernstein likelihood estimation in proportional hazard model for interval-censored data.
Stat Med. 2021 Feb 10;40(3):758-778. doi: 10.1002/sim.8801. Epub 2020 Nov 23.
6
[Application of conditional inference forest in time-to-event data analysis].
Nan Fang Yi Ke Da Xue Xue Bao. 2020 Apr 30;40(4):475-482. doi: 10.12122/j.issn.1673-4254.2020.04.05.
7
On hazard-based penalized likelihood estimation of accelerated failure time model with partly interval censoring.
Stat Methods Med Res. 2020 Dec;29(12):3804-3817. doi: 10.1177/0962280220942555. Epub 2020 Jul 20.
8
Lung cancer risk by years since quitting in 30+ pack year smokers.
J Med Screen. 2015 Sep;22(3):151-7. doi: 10.1177/0969141315579119. Epub 2015 Apr 29.
9
Generating survival times to simulate Cox proportional hazards models with time-varying covariates.
Stat Med. 2012 Dec 20;31(29):3946-58. doi: 10.1002/sim.5452. Epub 2012 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验