Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
Proteins. 2021 Apr;89(4):399-408. doi: 10.1002/prot.26025. Epub 2020 Dec 4.
A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) has emerged as a human pathogen, causing global pandemic and resulting in over 400 000 deaths worldwide. The surface spike protein of SARS-CoV-2 mediates the process of coronavirus entry into human cells by binding angiotensin-converting enzyme 2 (ACE2). Due to the critical role in viral-host interaction and the exposure of spike protein, it has been a focus of most vaccines' developments. However, the structural and biochemical studies of the spike protein are challenging because it is thermodynamically metastable. Here, we develop a new pipeline that automatically identifies mutants that thermodynamically stabilize the spike protein. Our pipeline integrates bioinformatics analysis of conserved residues, motion dynamics from molecular dynamics simulations, and other structural analysis to identify residues that significantly contribute to the thermodynamic stability of the spike protein. We then utilize our previously developed protein design tool, Eris, to predict thermodynamically stabilizing mutations in proteins. We validate the ability of our pipeline to identify protein stabilization mutants through known prefusion spike protein mutants. We finally utilize the pipeline to identify new prefusion spike protein stabilization mutants.
一种新型严重急性呼吸综合征(SARS)样冠状病毒(SARS-CoV-2)已成为人类病原体,导致了全球大流行,并在全球范围内导致超过 40 万人死亡。SARS-CoV-2 的表面刺突蛋白通过与血管紧张素转化酶 2(ACE2)结合介导冠状病毒进入人体细胞的过程。由于其在病毒-宿主相互作用中的关键作用以及刺突蛋白的暴露,它一直是大多数疫苗开发的重点。然而,由于其热力学上的亚稳态,刺突蛋白的结构和生化研究具有挑战性。在这里,我们开发了一种新的流水线,可以自动识别热力学上稳定刺突蛋白的突变体。我们的流水线整合了保守残基的生物信息学分析、分子动力学模拟的运动动力学以及其他结构分析,以识别对刺突蛋白热力学稳定性有重大贡献的残基。然后,我们利用我们之前开发的蛋白质设计工具 Eris 来预测蛋白质的热力学稳定突变。我们通过已知的预融合刺突蛋白突变体验证了我们的流水线识别蛋白质稳定突变体的能力。最后,我们利用该流水线鉴定了新的预融合刺突蛋白稳定突变体。