Suppr超能文献

通过计算突变稳定融合前刺突蛋白。

Prefusion spike protein stabilization through computational mutagenesis.

机构信息

Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA.

Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, USA.

出版信息

Proteins. 2021 Apr;89(4):399-408. doi: 10.1002/prot.26025. Epub 2020 Dec 4.

Abstract

A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) has emerged as a human pathogen, causing global pandemic and resulting in over 400 000 deaths worldwide. The surface spike protein of SARS-CoV-2 mediates the process of coronavirus entry into human cells by binding angiotensin-converting enzyme 2 (ACE2). Due to the critical role in viral-host interaction and the exposure of spike protein, it has been a focus of most vaccines' developments. However, the structural and biochemical studies of the spike protein are challenging because it is thermodynamically metastable. Here, we develop a new pipeline that automatically identifies mutants that thermodynamically stabilize the spike protein. Our pipeline integrates bioinformatics analysis of conserved residues, motion dynamics from molecular dynamics simulations, and other structural analysis to identify residues that significantly contribute to the thermodynamic stability of the spike protein. We then utilize our previously developed protein design tool, Eris, to predict thermodynamically stabilizing mutations in proteins. We validate the ability of our pipeline to identify protein stabilization mutants through known prefusion spike protein mutants. We finally utilize the pipeline to identify new prefusion spike protein stabilization mutants.

摘要

一种新型严重急性呼吸综合征(SARS)样冠状病毒(SARS-CoV-2)已成为人类病原体,导致了全球大流行,并在全球范围内导致超过 40 万人死亡。SARS-CoV-2 的表面刺突蛋白通过与血管紧张素转化酶 2(ACE2)结合介导冠状病毒进入人体细胞的过程。由于其在病毒-宿主相互作用中的关键作用以及刺突蛋白的暴露,它一直是大多数疫苗开发的重点。然而,由于其热力学上的亚稳态,刺突蛋白的结构和生化研究具有挑战性。在这里,我们开发了一种新的流水线,可以自动识别热力学上稳定刺突蛋白的突变体。我们的流水线整合了保守残基的生物信息学分析、分子动力学模拟的运动动力学以及其他结构分析,以识别对刺突蛋白热力学稳定性有重大贡献的残基。然后,我们利用我们之前开发的蛋白质设计工具 Eris 来预测蛋白质的热力学稳定突变。我们通过已知的预融合刺突蛋白突变体验证了我们的流水线识别蛋白质稳定突变体的能力。最后,我们利用该流水线鉴定了新的预融合刺突蛋白稳定突变体。

相似文献

1
Prefusion spike protein stabilization through computational mutagenesis.
Proteins. 2021 Apr;89(4):399-408. doi: 10.1002/prot.26025. Epub 2020 Dec 4.
2
Molecular dynamic simulation analysis of SARS-CoV-2 spike mutations and evaluation of ACE2 from pets and wild animals for infection risk.
Comput Biol Chem. 2022 Feb;96:107613. doi: 10.1016/j.compbiolchem.2021.107613. Epub 2021 Dec 1.
3
Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex.
ACS Nano. 2020 Sep 22;14(9):11821-11830. doi: 10.1021/acsnano.0c04674. Epub 2020 Aug 26.
4
Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states.
PLoS One. 2020 Nov 10;15(11):e0241168. doi: 10.1371/journal.pone.0241168. eCollection 2020.
6
Computational Prediction of Mutational Effects on SARS-CoV-2 Binding by Relative Free Energy Calculations.
J Chem Inf Model. 2020 Dec 28;60(12):5794-5802. doi: 10.1021/acs.jcim.0c00679. Epub 2020 Aug 31.
7
Structural basis of severe acute respiratory syndrome coronavirus 2 infection.
Curr Opin HIV AIDS. 2021 Jan;16(1):74-81. doi: 10.1097/COH.0000000000000658.
10
Evolutionary and structural analysis elucidates mutations on SARS-CoV2 spike protein with altered human ACE2 binding affinity.
Biochem Biophys Res Commun. 2021 Jan 1;534:374-380. doi: 10.1016/j.bbrc.2020.11.075. Epub 2020 Nov 28.

引用本文的文献

2
Vaccine development and technology for SARS-CoV-2: Current insight.
J Med Virol. 2022 Mar;94(3):878-896. doi: 10.1002/jmv.27425. Epub 2021 Nov 11.

本文引用的文献

2
Mapping allosteric communications within individual proteins.
Nat Commun. 2020 Jul 31;11(1):3862. doi: 10.1038/s41467-020-17618-2.
3
Structure-based design of prefusion-stabilized SARS-CoV-2 spikes.
Science. 2020 Sep 18;369(6510):1501-1505. doi: 10.1126/science.abd0826. Epub 2020 Jul 23.
4
Vulnerabilities in coronavirus glycan shields despite extensive glycosylation.
Nat Commun. 2020 May 27;11(1):2688. doi: 10.1038/s41467-020-16567-0.
5
The proximal origin of SARS-CoV-2.
Nat Med. 2020 Apr;26(4):450-452. doi: 10.1038/s41591-020-0820-9.
7
COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics.
Hum Vaccin Immunother. 2020 Jun 2;16(6):1232-1238. doi: 10.1080/21645515.2020.1735227. Epub 2020 Mar 18.
8
Coronavirus (COVID-19) outbreak: what the department of endoscopy should know.
Gastrointest Endosc. 2020 Jul;92(1):192-197. doi: 10.1016/j.gie.2020.03.019. Epub 2020 Mar 14.
9
Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry.
PLoS Pathog. 2020 Mar 9;16(3):e1008392. doi: 10.1371/journal.ppat.1008392. eCollection 2020 Mar.
10
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验