Suppr超能文献

SARS-CoV-2 刺突蛋白的静态全原子能量映射和“向上”与“向下”构象状态的动态稳定性分析。

Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states.

机构信息

Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America.

College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS One. 2020 Nov 10;15(11):e0241168. doi: 10.1371/journal.pone.0241168. eCollection 2020.

Abstract

The SARS-CoV-2 virion responsible for the current world-wide pandemic COVID-19 has a characteristic Spike protein (S) on its surface that embellishes both a prefusion state and fusion state. The prefusion Spike protein (S) is a large trimeric protein where each protomer may be in a so-called Up state or Down state, depending on the configuration of its receptor binding domain (RBD) within its distal, prefusion S1 domain. The Up state is believed to allow binding of the virion to ACE-2 receptors on human epithelial cells, whereas the Down state is believed to be relatively inactive or reduced in its binding behavior. We have performed detailed all-atom, dominant energy landscape mappings for noncovalent interactions (charge, partial charge, and van der Waals) of the SARS-CoV-2 Spike protein in its static prefusion state based on two recent and independent experimental structure publications. We included both interchain interactions and intrachain (domain) interactions in our mappings in order to determine any telling differences (different so-called "glue" points) between residues in the Up and Down state protomers. The S2 proximal, fusion domain demonstrated no appreciable energetic differences between Up and Down protomers, including interchain as well as each protomer's intrachain, S1-S2 interactions. However, the S1 domain interactions across neighboring protomers, which include the RBD-NTD cross chain interactions, showed significant energetic differences between Up-Down and Down-Down neighboring protomers. This included, for example, a key RBD residue ARG357 in the Up-Down interaction and a three residue sequence ALA520-PRO521-ALA522, associated with a turn structure in the RBD of the Up state protomer, acting as a stabilizing interaction with the NTD of its neighbor protomer. Additionally, our intra chain dominant energy mappings within each protomer, identified a significant "glue" point or possible "latch" for the Down state protomer between the S1 subdomain, SD1, and the RBD domain of the same protomer that was completely missing in the Up state protomer analysis. Ironically, this dominant energetic interaction in the Down state protomer involved the backbone atoms of the same three residue sequence ALA520-PRO521-ALA522 of the RBD with the amino acid R-group of GLN564 in the SD1 domain. Thus, this same three residue sequence acts as a stabilizer of the RBD in the Up conformation through its interactions with its neighboring NTD chain and a kind of latch in the Down state conformation through its interactions with its own SD1 domain. The dominant interaction energy residues identified here are also conserved across reported variations of SARS-CoV-2, as well as the closely related virions SARS-Cov and the bat corona virus RatG13. We conducted preliminary molecular dynamics simulations across 0.1 μ seconds to see if this latch provided structural stability and indeed found that a single point mutation (Q564G) resulted in the latch releasing transforming the protomer from the Down to the Up state conformation. Full trimeric Spike protein studies of the same mutation across all protomers, however, did not exhibit latch release demonstrating the critical importance of interchain interactions across the S1 domain, including RBD-NTD neighboring chain interactions. Therapies aimed at disrupting these noncovalent interactions could be a viable route for the physico-chemical mitigation of this deadly virion.

摘要

负责当前全球大流行 COVID-19 的 SARS-CoV-2 病毒颗粒表面有一个特征性的刺突蛋白(S),它既具有预融合状态,也具有融合状态。预融合 Spike 蛋白(S)是一种大型三聚体蛋白,每个单体可能处于所谓的“向上”状态或“向下”状态,具体取决于其受体结合域(RBD)在远端预融合 S1 结构域中的构象。据信,“向上”状态允许病毒颗粒与人类上皮细胞上的 ACE-2 受体结合,而“向下”状态则被认为相对不活跃或结合行为减少。我们根据最近的两项独立实验结构出版物,对 SARS-CoV-2 Spike 蛋白在其静态预融合状态下的非共价相互作用(电荷、部分电荷和范德华力)进行了详细的全原子、主能量景观映射。我们在映射中包括了链间相互作用和链内(结构域)相互作用,以确定在“向上”和“向下”单体中残基之间是否存在任何明显的差异(不同的所谓“粘性”点)。S2 近端融合结构域在“向上”和“向下”单体之间没有表现出明显的能量差异,包括链间以及每个单体的 S1-S2 相互作用。然而,相邻单体之间的 S1 结构域相互作用,包括 RBD-NTD 交叉链相互作用,在“向上-向下”和“向下-向下”相邻单体之间显示出显著的能量差异。例如,在“向上-向下”相互作用中,RBD 中的关键 RBD 残基 ARG357 以及与 RBD 单体中“向上”构象相关的三残基序列 ALA520-PRO521-ALA522 充当与相邻单体 NTD 的稳定相互作用。此外,我们在每个单体中的主链能量映射中,在单体的 S1 亚结构域 SD1 和同一单体的 RBD 结构域之间确定了一个重要的“粘性”点或可能的“闩锁”,用于“向下”单体,而在“向上”单体分析中完全缺失。具有讽刺意味的是,这种在“向下”单体中占主导地位的能量相互作用涉及 RBD 中相同三个残基序列 ALA520-PRO521-ALA522 的骨架原子与 SD1 结构域中 GLN564 的氨基酸 R 基团之间的相互作用。因此,通过与相邻 NTD 链的相互作用,该相同的三个残基序列作为 RBD 在“向上”构象中的稳定剂,而通过与自身 SD1 结构域的相互作用,该相同的三个残基序列作为“向下”构象中的闩锁。这里确定的主要相互作用能量残基在报告的 SARS-CoV-2 变体以及密切相关的 SARS-Cov 和蝙蝠冠状病毒 RatG13 中也是保守的。我们进行了初步的分子动力学模拟,跨越 0.1 μ 秒,以观察这种闩锁是否提供了结构稳定性,实际上发现单个点突变(Q564G)导致闩锁释放,将单体从“向下”状态转变为“向上”状态构象。然而,对所有单体的相同突变的全三聚体 Spike 蛋白研究并未表现出闩锁释放,这表明 S1 结构域中的链间相互作用,包括 RBD-NTD 相邻链相互作用,具有至关重要的意义。针对破坏这些非共价相互作用的治疗方法可能是减轻这种致命病毒的物理化学方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ddd/7654774/a42865302167/pone.0241168.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验