Li Jian, Ma Qiyue, Xu Yue, Yang Mingming, Wu Qiang, Wang Fenfen, Sun Pingchuan
Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):55290-55298. doi: 10.1021/acsami.0c17085. Epub 2020 Nov 24.
Thermoresponsive hydrogel-based actuators are highly important for fundamental research and industrial applications, while the preparation of temperature-driven bilayer hydrogel actuators with rapid response to bend and recover properties remains a challenge. To date, most temperature-driven bilayer hydrogel actuators are based on polymers only with a lower critical solution temperature (LCST) or with an upper critical solution temperature (UCST), which need more time to bend and recover just in a small range of bending angle. Herein, we propose a new strategy to design and synthesize a fully temperature-driven bilayer hydrogel actuator, which consists of a poly(-acryloyl glycinamide) (NAGA) layer with a UCST-type volume phase change and a poly(-isopropyl acrylamide) (NIPAM)-Laponite nanocomposite layer with an LCST-type volume phase change. Due to the complementary UCST and LCST behavior of the two selected polymers, both layers have opposite thermoresponsive swelling and shrinkage properties at low and high temperatures; this imbues the hydrogel actuator with rapid thermoresponsive bending and recovery ability, as well as a large bending angle. In addition, the incorporation of Laponite nanosheets in PNIPAM layer not only improves the mechanical property of actuators but also provides the excellent bonding ability of the two-layer interface, which prevents delamination caused by excessive local stress on the interface during the bending process. Thanks to high-performance behavior, the actuator can act as an effective and sensitive actuator, such as a gripper to capture, transport, and release an object, or as an electrical circuit switch to turn on and off a light-emitting diode (LED). Overall, such hydrogel actuator may provide new insights for the design and fabrication of artificial intelligence materials.
基于热响应水凝胶的驱动器对于基础研究和工业应用非常重要,而制备对弯曲和恢复特性具有快速响应的温度驱动双层水凝胶驱动器仍然是一个挑战。迄今为止,大多数温度驱动的双层水凝胶驱动器仅基于具有较低临界溶液温度(LCST)或具有较高临界溶液温度(UCST)的聚合物,它们在小范围的弯曲角度下弯曲和恢复需要更多时间。在此,我们提出了一种新策略来设计和合成一种完全温度驱动的双层水凝胶驱动器,它由具有UCST型体积相变的聚(丙烯酰甘氨酰胺)(NAGA)层和具有LCST型体积相变的聚(N-异丙基丙烯酰胺)(NIPAM)-锂皂石纳米复合层组成。由于两种所选聚合物的UCST和LCST行为互补,两层在低温和高温下具有相反的热响应溶胀和收缩特性;这赋予了水凝胶驱动器快速的热响应弯曲和恢复能力,以及大的弯曲角度。此外,在PNIPAM层中加入锂皂石纳米片不仅提高了驱动器的机械性能,还提供了两层界面的优异粘结能力,这防止了在弯曲过程中界面上局部应力过大导致的分层。由于具有高性能,该驱动器可以用作有效且灵敏的驱动器,例如用于抓取、运输和释放物体的夹具,或用作打开和关闭发光二极管(LED)的电路开关。总体而言,这种水凝胶驱动器可能为人工智能材料的设计和制造提供新的见解。