Liu Jinshuai, Zhang Hao, Meng Jiashen, Han Chunhua, Liu Fang, Liu Xiong, Wu Peijie, Liu Ziang, Wang Xuanpeng, Mai Liqiang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):54545-54552. doi: 10.1021/acsami.0c14112. Epub 2020 Nov 24.
N-doped carbon-confined transition metal nanocatalysts display efficient oxygen reduction reaction (ORR) performance comparable to commercial Pt/C electrocatalysts because of their efficient charge transfer from metal atoms to active N sites. However, the sheathed active sites inside the electrocatalysts and relatively large-size confined metal particles greatly restrict their activity improvement. Here, we develop a facile and efficient "MOFs plus ZIFs" synthesis strategy to successfully construct ultrafine sub-5 nm Co nanodots confined into superficial N-doped carbon nanowires (Co@C@NC) via a well-designed synthesis process. The unique synthesis mechanism is based on low-pressure vapor superassembly of thin zeolitic imidazolate framework (ZIF) coatings on metal-organic framework substrates. During the successive pyrolysis, the preferential formation of the robust N-doped carbon shell from the ZIF-67 shell keeps the core morphology without shrinkage and limits the growth of Co nanodots. Benefiting from this architecture with accessible and rich active N sites on the surface, stable carbon confined architecture, and large surface area, the Co@C@NC exhibits excellent ORR performance, catching up to commercial Pt/C. Density functional theory demonstrates that the confined Co nanodots efficiently enhance the charge density of superficial active N sites by interfacial charge transfer, thus accelerating the ORR process.
氮掺杂碳限制的过渡金属纳米催化剂由于其从金属原子到活性氮位点的有效电荷转移,表现出与商业铂/碳电催化剂相当的高效氧还原反应(ORR)性能。然而,电催化剂内部被包裹的活性位点以及相对较大尺寸的受限金属颗粒极大地限制了它们活性的提高。在此,我们开发了一种简便高效的“金属有机框架(MOF)加沸石咪唑酯骨架(ZIF)”合成策略,通过精心设计的合成过程成功构建了限域在表面氮掺杂碳纳米线中的亚5纳米超细微钴纳米点(Co@C@NC)。独特的合成机制基于在金属有机框架基底上低压气相超薄沸石咪唑酯骨架(ZIF)涂层的超组装。在连续热解过程中,由ZIF-67壳层优先形成坚固的氮掺杂碳壳,保持核心形态不收缩,并限制钴纳米点的生长。得益于这种具有表面可及且丰富的活性氮位点、稳定的碳限制结构和大表面积的结构,Co@C@NC表现出优异的ORR性能,可与商业铂/碳相媲美。密度泛函理论表明,限域的钴纳米点通过界面电荷转移有效地提高了表面活性氮位点的电荷密度,从而加速了ORR过程。