Suppr超能文献

机器人辅助行走中的推进训练:站立期间施加到髋关节和膝关节的扭矩脉冲的影响。

Robot-Aided Training of Propulsion During Walking: Effects of Torque Pulses Applied to the Hip and Knee Joints During Stance.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2923-2932. doi: 10.1109/TNSRE.2020.3039962. Epub 2021 Jan 28.

Abstract

We sought to evaluate the effects of the application of torque pulses to the hip and knee joint via a robotic exoskeleton in the context of training propulsion during walking. Based on our previous study, we formulated a set of conditions of torque pulses applied to the hip and knee joint associated with changes in push-off posture, a component of propulsion. In this work, we quantified the effects of hip/knee torque pulses on metrics of propulsion, specifically hip extension (HE) and normalized propulsive impulse (NPI), in two experiments. In the first experiment, we exposed 16 participants to sixteen conditions of torque pulses during single strides to observe the immediate effects of pulse application. In the second experiment, we exposed 16 participants to a subset of those conditions for 200 strides to quantify short-term adaptation effects. During pulse application, NPI aligned with the expected modulation of push-off posture, while HE was modulated in the opposite direction. The timing of the applied pulses, early or late stance, was crucial, as the effects were often in the opposite direction when changing timing condition. Extension torque applied at late stance increased HE in both experiments - range of change in HE: (2.9 ± 0.4 deg, 7.7 ± 1.0 deg), . The same conditions resulted in a negative change in NPI only in the single pulse experiment - change in NPI for knee torque: -3.0 ± 0.4 ms, - and no significant change for hip torque. Also, knee extension and flexion torque during early and late stance, respectively, increased NPI during single pulse application - range of change in NPI: (3.8, 4.6) ± 0.8 ms, . During repeated pulse application, NPI increased for late stance flexion torque - range of change in NPI: (4.5 ± 0.7 ms, 4.8 ± 0.8 ms), , but not late stance extension torque. After exposure, we observed positive after-effects in HE in three conditions - range of change in HE: (2.0 ± 0.3 deg, 3.7 ± 0.7 deg) - and significant positive after-effects in NPI for early stance flexion torques - change in NPI: (2.7 ± 0.6 ms, ). These results indicate that positive propulsive after-effects can be achieved through repeated exposure to torque pulses.

摘要

我们旨在评估通过机器人外骨骼在行走时施加髋关节和膝关节的扭矩脉冲对推进力训练的影响。基于我们之前的研究,我们制定了一组与推动姿势变化相关的髋关节和膝关节扭矩脉冲施加条件,这是推进力的一个组成部分。在这项工作中,我们在两个实验中量化了髋关节/膝关节扭矩脉冲对推进力指标(即髋关节伸展(HE)和归一化推进冲量(NPI))的影响。在第一个实验中,我们让 16 名参与者在单步中经历 16 种不同的扭矩脉冲条件,以观察脉冲施加的即时效果。在第二个实验中,我们让 16 名参与者在 200 步中经历其中一部分条件,以量化短期适应效果。在施加脉冲时,NPI 与预期的推动姿势调制一致,而 HE 则相反。施加脉冲的时机(早期或晚期支撑)至关重要,因为改变时相条件时,效果往往相反。晚期支撑时施加的伸展扭矩增加了两个实验中的 HE-HE 的变化范围:(2.9±0.4 度,7.7±1.0 度),。相同的条件仅在单次脉冲实验中导致 NPI 的负变化-膝关节扭矩的 NPI 变化:-3.0±0.4 毫秒,-而髋关节扭矩没有明显变化。此外,在单脉冲应用期间,早期和晚期支撑时的膝关节伸展和屈曲扭矩分别增加了 NPI-改变 NPI 的范围:(3.8,4.6)±0.8 毫秒,。在重复脉冲应用中,晚期支撑时的屈曲扭矩的 NPI 增加-改变 NPI 的范围:(4.5±0.7 毫秒,4.8±0.8 毫秒),但晚期支撑时的伸展扭矩没有增加。暴露后,我们观察到三个条件下 HE 的正后效-HE 的变化范围:(2.0±0.3 度,3.7±0.7 度),以及早期支撑时的屈曲扭矩的 NPI 的显著正后效-改变 NPI:(2.7±0.6 毫秒,)。这些结果表明,通过重复暴露于扭矩脉冲可以实现正推进后效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25f2/7924546/d7e97173ad88/nihms-1667387-f0001.jpg

相似文献

本文引用的文献

7
Electromechanical-assisted training for walking after stroke.中风后步行的机电辅助训练
Cochrane Database Syst Rev. 2017 May 10;5(5):CD006185. doi: 10.1002/14651858.CD006185.pub4.
9
Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.软质外骨骼套装多关节辅助的生物力学与生理学评估
IEEE Trans Neural Syst Rehabil Eng. 2017 Feb;25(2):119-130. doi: 10.1109/TNSRE.2016.2523250. Epub 2016 Jan 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验