Suppr超能文献

与变化赛跑:了解扩散和持续存在以改善物种保护前景。

Racing against change: understanding dispersal and persistence to improve species' conservation prospects.

机构信息

Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.

出版信息

Proc Biol Sci. 2020 Nov 25;287(1939):20202061. doi: 10.1098/rspb.2020.2061.

Abstract

Climate change is contributing to the widespread redistribution, and increasingly the loss, of species. Geographical range shifts among many species were detected rapidly after predictions of the potential importance of climate change were specified 35 years ago: species are shifting their ranges towards the poles and often to higher elevations in mountainous areas. Early tests of these predictions were largely qualitative, though extraordinarily rapid and broadly based, and statistical tests distinguishing between climate change and other global change drivers provided quantitative evidence that climate change had already begun to cause species' geographical ranges to shift. I review two mechanisms enabling this process, namely development of approaches for accounting for dispersal that contributes to range expansion, and identification of factors that alter persistence and lead to range loss. Dispersal in the context of range expansion depends on an array of processes, like population growth rates in novel environments, rates of individual species movements to new locations, and how quickly areas of climatically tolerable habitat shift. These factors can be tied together in well-understood mathematical frameworks or modelled statistically, leading to better prediction of extinction risk as climate changes. Yet, species' increasing exposures to novel climate conditions can exceed their tolerances and raise the likelihood of local extinction and consequent range losses. Such losses are the consequence of processes acting on individuals, driven by factors, such as the growing frequency and severity of extreme weather, that contribute local extinction risks for populations and species. Many mechanisms can govern how species respond to climate change, and rapid progress in global change research creates many opportunities to inform policy and improve conservation outcomes in the early stages of the sixth mass extinction.

摘要

气候变化导致物种广泛重新分布,越来越多的物种正在消失。35 年前,人们预测气候变化的潜在重要性后,许多物种的地理分布范围迅速发生变化:物种向两极和山区高处迁移。尽管这些预测早期的检验很大程度上是定性的,但速度非常快,范围非常广泛,并且区分气候变化和其他全球变化驱动因素的统计检验提供了定量证据,表明气候变化已经开始导致物种的地理分布范围发生变化。我回顾了两种促成这一过程的机制,即发展用于解释有助于范围扩展的扩散的方法,以及确定改变持久性并导致范围损失的因素。在范围扩展的背景下,扩散取决于一系列过程,例如在新环境中的种群增长率、物种个体向新地点移动的速度以及气候适宜栖息地变化的速度。这些因素可以在理解良好的数学框架中联系在一起,或者通过统计学建模,从而更好地预测随着气候变化物种灭绝的风险。然而,物种越来越多地暴露在新的气候条件下,可能超过它们的耐受性,并增加局部灭绝的可能性,从而导致范围缩小。这种损失是个体作用过程的结果,由极端天气的频率和严重程度增加等因素驱动,这些因素增加了种群和物种局部灭绝的风险。许多机制可以控制物种对气候变化的反应,全球变化研究的快速进展为在第六次大规模灭绝的早期阶段为政策提供信息和改善保护结果创造了许多机会。

相似文献

1
Racing against change: understanding dispersal and persistence to improve species' conservation prospects.
Proc Biol Sci. 2020 Nov 25;287(1939):20202061. doi: 10.1098/rspb.2020.2061.
2
Facilitating climate-change-induced range shifts across continental land-use barriers.
Conserv Biol. 2015 Dec;29(6):1586-95. doi: 10.1111/cobi.12556. Epub 2015 Jul 20.
3
Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies.
J Anim Ecol. 2014 Jul;83(4):858-65. doi: 10.1111/1365-2656.12181. Epub 2013 Dec 10.
4
Illuminating geographical patterns in species' range shifts.
Glob Chang Biol. 2014 Oct;20(10):3080-91. doi: 10.1111/gcb.12570. Epub 2014 Apr 26.
5
Climate change-driven range losses among bumblebee species are poised to accelerate.
Sci Rep. 2018 Oct 18;8(1):14464. doi: 10.1038/s41598-018-32665-y.
6
Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog.
Ecol Appl. 2017 Jul;27(5):1633-1645. doi: 10.1002/eap.1556. Epub 2017 Jun 19.
7
Spatial Population Structure Determines Extinction Risk in Climate-Induced Range Shifts.
Am Nat. 2020 Jan;195(1):31-42. doi: 10.1086/706259. Epub 2019 Dec 6.
8
Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.
Glob Chang Biol. 2014 Jun;20(6):1782-93. doi: 10.1111/gcb.12560. Epub 2014 Mar 28.
9
Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus).
Sci Total Environ. 2017 Nov 15;598:1-11. doi: 10.1016/j.scitotenv.2017.03.228. Epub 2017 Apr 20.

引用本文的文献

1
Stochastic diffusion using mean-field limits to approximate master equations.
R Soc Open Sci. 2025 Sep 10;12(9):250726. doi: 10.1098/rsos.250726. eCollection 2025 Sep.
2
Climate-Driven Body Size Changes in Birds and Mammals Reveal Environmental Tolerance Limits.
Glob Chang Biol. 2025 May;31(5):e70241. doi: 10.1111/gcb.70241.
3
Remotely sensed data contribution in predicting the distribution of native Mediterranean species.
Sci Rep. 2025 Apr 11;15(1):12475. doi: 10.1038/s41598-025-94569-y.
5
Foresight science in conservation: Tools, barriers, and mainstreaming opportunities.
Ambio. 2023 Feb;52(2):411-424. doi: 10.1007/s13280-022-01786-0. Epub 2022 Oct 26.
6
High resolution thermal remote sensing and the limits of species' tolerance.
PeerJ. 2022 Sep 28;10:e13911. doi: 10.7717/peerj.13911. eCollection 2022.
7
Insights into bear evolution from a Pleistocene polar bear genome.
Proc Natl Acad Sci U S A. 2022 Jun 14;119(24):e2200016119. doi: 10.1073/pnas.2200016119. Epub 2022 Jun 6.
8
Physiology can predict animal activity, exploration, and dispersal.
Commun Biol. 2022 Feb 3;5(1):109. doi: 10.1038/s42003-022-03055-y.
9
Climate change drives mountain butterflies towards the summits.
Sci Rep. 2021 Jul 13;11(1):14382. doi: 10.1038/s41598-021-93826-0.
10
2020: the year in review.
Proc Biol Sci. 2021 Jan 13;288(1942):20202887. doi: 10.1098/rspb.2020.2887. Epub 2021 Jan 6.

本文引用的文献

1
A modern method of multiple working hypotheses to improve inference in ecology.
R Soc Open Sci. 2020 Jun 3;7(6):200231. doi: 10.1098/rsos.200231. eCollection 2020 Jun.
2
Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change.
Nat Commun. 2020 Jun 2;11(1):2770. doi: 10.1038/s41467-020-16502-3.
3
Climate change contributes to widespread declines among bumble bees across continents.
Science. 2020 Feb 7;367(6478):685-688. doi: 10.1126/science.aax8591.
4
Biotic and anthropogenic forces rival climatic/abiotic factors in determining global plant population growth and fitness.
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):1107-1112. doi: 10.1073/pnas.1918363117. Epub 2019 Dec 30.
5
Forecasting species range dynamics with process-explicit models: matching methods to applications.
Ecol Lett. 2019 Nov;22(11):1940-1956. doi: 10.1111/ele.13348. Epub 2019 Jul 29.
6
Uncertainty in ensembles of global biodiversity scenarios.
Nat Commun. 2019 Mar 29;10(1):1446. doi: 10.1038/s41467-019-09519-w.
7
Adaptation, speciation and extinction in the Anthropocene.
Proc Biol Sci. 2018 Nov 14;285(1891):20182047. doi: 10.1098/rspb.2018.2047.
8
Climate change-driven range losses among bumblebee species are poised to accelerate.
Sci Rep. 2018 Oct 18;8(1):14464. doi: 10.1038/s41598-018-32665-y.
9
Outstanding Challenges in the Transferability of Ecological Models.
Trends Ecol Evol. 2018 Oct;33(10):790-802. doi: 10.1016/j.tree.2018.08.001. Epub 2018 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验