Hébert-Dufresne Laurent, Kling Matthew M, Rosenblatt Samuel F, Miller Stephanie N, Burnham P Alexander, Landry Nicholas W, Gotelli Nicholas J, McGill Brian J
Vermont Complex Systems Institute, University of Vermont, Burlington, VT, USA.
Department of Computer Science, University of Vermont, Burlington, VT, USA.
R Soc Open Sci. 2025 Sep 10;12(9):250726. doi: 10.1098/rsos.250726. eCollection 2025 Sep.
Stochastic diffusion is the noisy process through which dynamics like epidemics, or agents like animal species, disperse over a larger area. These processes are increasingly important to better prepare for pandemics and as species ranges shift in response to climate change. Unfortunately, modelling is mostly done with expensive computational simulations or inaccurate deterministic tools that ignore the randomness of dispersal. We introduce 'mean-FLAME' models, tracking stochastic dispersion using approximate master equations to follow the probability distribution over all possible states of an area of interest, up to states active enough to be approximated using a mean-field model. In the limit where we track all states, this approach is locally exact, and in the other limit collapses to traditional deterministic models. In predator-prey systems, we show that tracking a handful of states around key absorbing states is sufficient to accurately model extinction. In disease models, we show that classic mean-field approaches underestimate the heterogeneity of epidemics. And in nonlinear dispersal models, we show that deterministic tools fail to capture the speed of spatial diffusion. These effects are all important for marginal areas that are close to unsuitable for diffusion, like the edge of a species range or epidemics in small populations.
随机扩散是一种有噪声的过程,通过该过程,诸如流行病等动态现象或诸如动物物种等主体在更大的区域内扩散。这些过程对于更好地应对大流行以及随着物种分布范围因气候变化而发生变化而言,变得越来越重要。不幸的是,建模大多通过昂贵的计算模拟或不准确的确定性工具来完成,这些工具忽略了扩散的随机性。我们引入了“平均-FLAME”模型,利用近似主方程跟踪随机扩散,以跟踪感兴趣区域所有可能状态上的概率分布,直至状态活跃到足以使用平均场模型进行近似。在我们跟踪所有状态的极限情况下,这种方法在局部是精确的,而在另一个极限情况下则退化为传统的确定性模型。在捕食者-猎物系统中,我们表明在关键吸收状态周围跟踪少数几个状态就足以准确模拟灭绝情况。在疾病模型中,我们表明经典的平均场方法低估了流行病的异质性。并且在非线性扩散模型中,我们表明确定性工具无法捕捉空间扩散的速度。这些效应对于接近不适合扩散的边缘区域都很重要,比如物种分布范围的边缘或小种群中的流行病。