文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种发育阶段特异性的网络方法,用于研究颅面发育过程中转录因子和 microRNAs 的动态协同调控。

A developmental stage-specific network approach for studying dynamic co-regulation of transcription factors and microRNAs during craniofacial development.

机构信息

Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.

出版信息

Development. 2020 Dec 24;147(24):dev192948. doi: 10.1242/dev.192948.


DOI:10.1242/dev.192948
PMID:33234712
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7774895/
Abstract

Craniofacial development is regulated through dynamic and complex mechanisms that involve various signaling cascades and gene regulations. Disruption of such regulations can result in craniofacial birth defects. Here, we propose the first developmental stage-specific network approach by integrating two crucial regulators, transcription factors (TFs) and microRNAs (miRNAs), to study their co-regulation during craniofacial development. Specifically, we used TFs, miRNAs and non-TF genes to form feed-forward loops (FFLs) using genomic data covering mouse embryonic days E10.5 to E14.5. We identified key novel regulators (TFs Foxm1, Hif1a, Zbtb16, Myog, Myod1 and Tcf7, and miRNAs miR-340-5p and miR-129-5p) and target genes (, and ) expression of which changed in a developmental stage-dependent manner. We found that the Wnt-FoxO-Hippo pathway (from E10.5 to E11.5), tissue remodeling (from E12.5 to E13.5) and miR-129-5p-mediated regulation (from E10.5 to E14.5) might play crucial roles in craniofacial development. Enrichment analyses further suggested their functions. Our experiments validated the regulatory roles of miR-340-5p and Foxm1 in the Wnt-FoxO-Hippo subnetwork, as well as the role of miR-129-5p in the miR-129-5p- subnetwork. Thus, our study helps understand the comprehensive regulatory mechanisms for craniofacial development.

摘要

颅面发育受涉及多种信号级联和基因调控的动态复杂机制调控。这些调控的破坏会导致颅面出生缺陷。在这里,我们提出了第一个发育阶段特异性网络方法,通过整合两个关键调节因子(转录因子(TFs)和 microRNAs(miRNAs))来研究它们在颅面发育过程中的共同调节。具体来说,我们使用 TFs、miRNAs 和非 TF 基因,使用涵盖小鼠胚胎第 10.5 天至第 14.5 天的基因组数据,形成前馈回路(FFLs)。我们确定了关键的新调节因子(TFs Foxm1、Hif1a、Zbtb16、Myog、Myod1 和 Tcf7,以及 miRNAs miR-340-5p 和 miR-129-5p)及其靶基因(,和)的表达,其表达随发育阶段的变化而变化。我们发现,Wnt-FoxO-Hippo 通路(从 E10.5 到 E11.5)、组织重塑(从 E12.5 到 E13.5)和 miR-129-5p 介导的 调节(从 E10.5 到 E14.5)可能在颅面发育中起关键作用。富集分析进一步表明了它们的功能。我们的实验验证了 miR-340-5p 和 Foxm1 在 Wnt-FoxO-Hippo 子网络中的调节作用,以及 miR-129-5p 在 miR-129-5p-子网络中的作用。因此,我们的研究有助于理解颅面发育的综合调控机制。

相似文献

[1]
A developmental stage-specific network approach for studying dynamic co-regulation of transcription factors and microRNAs during craniofacial development.

Development. 2020-12-24

[2]
Analysis of Hypoxiamir-Gene Regulatory Network Identifies Critical MiRNAs Influencing Cell-Cycle Regulation Under Hypoxic Conditions.

Microrna. 2019

[3]
Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma.

PLoS Comput Biol. 2012-7-19

[4]
MicroRNA and transcription factor co-regulatory networks and subtype classification of seminoma and non-seminoma in testicular germ cell tumors.

Sci Rep. 2020-1-21

[5]
Screening the key microRNAs and transcription factors in prostate cancer based on microRNA functional synergistic relationships.

Medicine (Baltimore). 2017-1

[6]
Multiple tumor suppressor microRNAs regulate telomerase and TCF7, an important transcriptional regulator of the Wnt pathway.

PLoS One. 2014-2-14

[7]
RNA sequencing-based identification of the regulatory mechanism of microRNAs, transcription factors, and corresponding target genes involved in vascular dementia.

Front Neurosci. 2022-9-20

[8]
Systematic identification and analysis of dysregulated miRNA and transcription factor feed-forward loops in hypertrophic cardiomyopathy.

J Cell Mol Med. 2018-10-19

[9]
MicroRNA and transcription factor mediated regulatory network analysis reveals critical regulators and regulatory modules in myocardial infarction.

PLoS One. 2015-8-10

[10]
Network-based identification of critical regulators as putative drivers of human cleft lip.

BMC Med Genomics. 2019-1-31

引用本文的文献

[1]
Protective effect of extract against all-trans-retinoic acid-induced inhibition of proliferation of cultured human palate cells.

Nagoya J Med Sci. 2024-5

[2]
Single-cell multiomics decodes regulatory programs for mouse secondary palate development.

Nat Commun. 2024-1-27

[3]
MicroRNAs in Small Extracellular Vesicles from Amniotic Fluid and Maternal Plasma Associated with Fetal Palate Development in Mice.

Int J Mol Sci. 2023-12-6

[4]
Clinical and Genetic Characteristics of Calvarial Doughnut Lesions with Bone Fragility in Three Families with a Reccurent Gene Variant.

Int J Mol Sci. 2023-4-28

[5]
Early-Onset Osteoporosis: Rare Monogenic Forms Elucidate the Complexity of Disease Pathogenesis Beyond Type I Collagen.

J Bone Miner Res. 2022-9

[6]
FaceBase: A Community-Driven Hub for Data-Intensive Research.

J Dent Res. 2022-10

[7]
Spatiotemporal MicroRNA-Gene Expression Network Related to Orofacial Clefts.

J Dent Res. 2022-10

[8]
Suppression of microRNA 124-3p and microRNA 340-5p ameliorates retinoic acid-induced cleft palate in mice.

Development. 2022-5-1

[9]
Crucial Roles of microRNA-16-5p and microRNA-27b-3p in Ameloblast Differentiation Through Regulation of Genes Associated With Amelogenesis Imperfecta.

Front Genet. 2022-3-25

[10]
An miRNA derived from amelogenin exon4 regulates expression of transcription factor Runx2 by directly targeting upstream activators Nfia and Prkch.

J Biol Chem. 2022-5

本文引用的文献

[1]
MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse.

BMC Genomics. 2019-11-14

[2]
Orofacial Muscles: Embryonic Development and Regeneration after Injury.

J Dent Res. 2019-11-1

[3]
Critical microRNAs and regulatory motifs in cleft palate identified by a conserved miRNA-TF-gene network approach in humans and mice.

Brief Bioinform. 2020-7-15

[4]
miR-340-5p Suppresses Aggressiveness in Glioblastoma Multiforme by Targeting Bcl-w and Sox2.

Mol Ther Nucleic Acids. 2019-9-6

[5]
MicroRNA-374a, -4680, and -133b suppress cell proliferation through the regulation of genes associated with human cleft palate in cultured human palate cells.

BMC Med Genomics. 2019-7-1

[6]
MicroRNA-655-3p and microRNA-497-5p inhibit cell proliferation in cultured human lip cells through the regulation of genes related to human cleft lip.

BMC Med Genomics. 2019-5-23

[7]
WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs.

Nucleic Acids Res. 2019-7-2

[8]
Functions of promyelocytic leukaemia zinc finger (Plzf) in male germline stem cell development and differentiation.

Reprod Fertil Dev. 2019-7

[9]
FOXM1 is a novel predictor of recurrence in patients with oral squamous cell carcinoma associated with an increase in epithelial‑mesenchymal transition.

Mol Med Rep. 2019-3-27

[10]
Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models.

Dis Model Mech. 2019-2-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索