文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

与口腔面裂相关的时空 microRNA-基因表达网络。

Spatiotemporal MicroRNA-Gene Expression Network Related to Orofacial Clefts.

机构信息

Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA.

出版信息

J Dent Res. 2022 Oct;101(11):1398-1407. doi: 10.1177/00220345221105816. Epub 2022 Jun 30.


DOI:10.1177/00220345221105816
PMID:35774010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9516630/
Abstract

Craniofacial structures change dynamically in morphology during development through the coordinated regulation of various cellular molecules. However, it remains unclear how these complex mechanisms are regulated in a spatiotemporal manner. Here we applied natural cubic splines to model gene and microRNA (miRNA) expression from embryonic day (E) 10.5 to E14.5 in the proximal and distal regions of the maxillary processes to identify spatiotemporal patterns of gene and miRNA expression, followed by constructing corresponding regulatory networks. Three major groups of differentially expressed genes (DEGs) were identified, including 3,927 temporal, 314 spatial, and 494 spatiotemporal DEGs. Unsupervised clustering further resolved these spatiotemporal DEGs into 8 clusters with distinct expression patterns. Interestingly, we found 2 clusters of differentially expressed miRNAs: 1 had 80 miRNAs monotonically decreasing and the other had 97 increasing across developmental stages. To evaluate the phenotypic relevance of these DEGs during craniofacial development, we integrated data from the CleftGeneDB database and constructed the regulatory networks of genes related to orofacial clefts. Our analysis revealed 2 hub miRNAs, mmu-miR-325-3p and mmu-miR-384-5p, that repressed cleft-related genes , , , , and , while their expression increased over time. On the contrary, 2 hub miRNAs, mmu-miR-218-5p and mmu-miR-338-5p, repressed cleft-related genes , , , , and , while their expression decreased over time. Our experiments indicated that these miRNA mimics significantly inhibited cell proliferation in mouse embryonic palatal mesenchymal (MEPM) cells and O9-1 cells through the regulation of genes associated with cleft palate and validated the role of our regulatory networks in orofacial clefts. To facilitate interactive exploration of these data, we developed a user-friendly web tool to visualize the gene and miRNA expression patterns across developmental stages, as well as the regulatory networks (https://fyan.shinyapps.io/facebase_shiny/). Taken together, our results provide a valuable resource that serves as a reference map for future research in craniofacial development.

摘要

颅面结构在发育过程中通过各种细胞分子的协调调节在形态上发生动态变化。然而,这些复杂机制如何在时空上进行调节仍不清楚。在这里,我们应用自然三次样条来模拟从胚胎第 10.5 天到第 14.5 天上颌突的近侧和远侧区域的基因和 microRNA(miRNA)表达,以鉴定基因和 miRNA 表达的时空模式,然后构建相应的调控网络。鉴定出三个主要的差异表达基因(DEG)组,包括 3927 个时间 DEG、314 个空间 DEG 和 494 个时空 DEG。无监督聚类进一步将这些时空 DEG 分为 8 个具有不同表达模式的聚类。有趣的是,我们发现了 2 个差异表达 miRNA 簇:1 个簇中有 80 个 miRNA 随时间单调下降,另一个簇中有 97 个 miRNA 随时间增加。为了评估这些 DEG 在颅面发育过程中的表型相关性,我们整合了 CleftGeneDB 数据库的数据,并构建了与口腔颌面裂相关基因的调控网络。我们的分析揭示了 2 个枢纽 miRNA,mmu-miR-325-3p 和 mmu-miR-384-5p,它们抑制了与裂相关的基因,而它们的表达随时间增加。相反,2 个枢纽 miRNA,mmu-miR-218-5p 和 mmu-miR-338-5p,抑制了与裂相关的基因,而它们的表达随时间减少。我们的实验表明,这些 miRNA 模拟物通过调节与腭裂相关的基因显著抑制了小鼠胚胎腭中胚层(MEPM)细胞和 O9-1 细胞的增殖,并验证了我们的调控网络在口腔颌面裂中的作用。为了便于对这些数据进行交互式探索,我们开发了一个用户友好的网络工具,用于可视化基因和 miRNA 表达模式在发育阶段以及调控网络(https://fyan.shinyapps.io/facebase_shiny/)。总之,我们的结果提供了一个有价值的资源,为未来的颅面发育研究提供了参考图谱。

相似文献

[1]
Spatiotemporal MicroRNA-Gene Expression Network Related to Orofacial Clefts.

J Dent Res. 2022-10

[2]
MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse.

BMC Genomics. 2019-11-14

[3]
High throughput miRNA sequencing and bioinformatics analysis identify the mesenchymal cell proliferation and apoptosis related miRNAs during fetal mice palate development.

J Gene Med. 2023-9

[4]
miRNAs as biomarkers of orofacial clefts: A systematic review.

J Oral Pathol Med. 2019-9-17

[5]
MicroRNA-655-3p and microRNA-497-5p inhibit cell proliferation in cultured human lip cells through the regulation of genes related to human cleft lip.

BMC Med Genomics. 2019-5-23

[6]
Dexamethasone Suppresses Palatal Cell Proliferation through miR-130a-3p.

Int J Mol Sci. 2021-11-18

[7]
Distinct Expression of miR-378 in Nonsyndromic Cleft Lip and/or Cleft Palate: A Cogitation of Skewed Sex Ratio in Prevalence.

Cleft Palate Craniofac J. 2021-1

[8]
Prediction and Boolean logical modelling of synergistic microRNA regulatory networks during reprogramming of male germline pluripotent stem cells.

Biosystems. 2021-9

[9]
Suppression of microRNA 124-3p and microRNA 340-5p ameliorates retinoic acid-induced cleft palate in mice.

Development. 2022-5-1

[10]
MicroRNA-374a, -4680, and -133b suppress cell proliferation through the regulation of genes associated with human cleft palate in cultured human palate cells.

BMC Med Genomics. 2019-7-1

引用本文的文献

[1]
miR-383-3p and miR-6951-3p activate cell proliferation through the regulation of genes related to hypertelorism.

Front Cell Dev Biol. 2025-7-24

[2]
Molecular Regulation of Palatogenesis and Clefting: An Integrative Analysis of Genetic, Epigenetic Networks, and Environmental Interactions.

Int J Mol Sci. 2025-2-6

[3]
Lhx6 deficiency causes human embryonic palatal mesenchymal cell mitophagy dysfunction in cleft palate.

Mol Med. 2024-10-22

[4]
Genes Related to Frontonasal Malformations Are Regulated by miR-338-5p, miR-653-5p, and miR-374-5p in O9-1 Cells.

J Dev Biol. 2024-7-6

[5]
Single-cell multiomics decodes regulatory programs for mouse secondary palate development.

Nat Commun. 2024-1-27

[6]
MicroRNAs in Small Extracellular Vesicles from Amniotic Fluid and Maternal Plasma Associated with Fetal Palate Development in Mice.

Int J Mol Sci. 2023-12-6

[7]
Role of noncoding RNAs in orthodontic tooth movement: new insights into periodontium remodeling.

J Transl Med. 2023-2-9

[8]
Data-Driven Dental, Oral, and Craniofacial Analytics: Here to Stay.

J Dent Res. 2022-10

本文引用的文献

[1]
CleftGeneDB: a resource for annotating genes associated with cleft lip and cleft palate.

Sci Bull (Beijing). 2021-12-15

[2]
Screening approaches for identifying fetal alcohol spectrum disorder in children, adolescents, and adults: A systematic review.

Alcohol Clin Exp Res. 2021-8

[3]
A developmental stage-specific network approach for studying dynamic co-regulation of transcription factors and microRNAs during craniofacial development.

Development. 2020-12-24

[4]
FaceBase 3: analytical tools and FAIR resources for craniofacial and dental research.

Development. 2020-9-21

[5]
An integrative, genomic, transcriptomic and network-assisted study to identify genes associated with human cleft lip with or without cleft palate.

BMC Med Genomics. 2020-4-3

[6]
TSEA-DB: a trait-tissue association map for human complex traits and diseases.

Nucleic Acids Res. 2020-1-8

[7]
Critical microRNAs and regulatory motifs in cleft palate identified by a conserved miRNA-TF-gene network approach in humans and mice.

Brief Bioinform. 2020-7-15

[8]
Network-based identification of critical regulators as putative drivers of human cleft lip.

BMC Med Genomics. 2019-1-31

[9]
Genes and microRNAs associated with mouse cleft palate: A systematic review and bioinformatics analysis.

Mech Dev. 2018-4

[10]
Natural history and genotype-phenotype correlations in 72 individuals with SATB2-associated syndrome.

Am J Med Genet A. 2018-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索