Zhu Guangqi, Qi Yanling, Liu Fan, Ma Shenqian, Xiang Guolei, Jin Fengmin, Liu Zigeng, Wang Wei
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
State Key Laboratory of Chemical Resource Engineering College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
ChemSusChem. 2021 Feb 5;14(3):866-875. doi: 10.1002/cssc.202002359. Epub 2020 Dec 9.
The ordinary intrinsic activity and disordered distribution of metal sites in zero/one-dimensional (0D/1D) single-atom catalysts (SACs) lead to inferior catalytic efficiency and short-term endurance in the oxygen reduction reaction (ORR), which restricts the large-scale application of hydrogen-oxygen fuel cells and metal-air batteries. To improve the activity of SACs, a mild synthesis method was chosen to conjugate 1D Fe SACs with 2D graphene film (Fe SAC@G) that realized a composite structure with well-ordered atomic-Fe coordination configuration. The product exhibits outstanding ORR electrocatalytic efficiency and stability in 0.1 M KOH aqueous solution. DFT-D computational results manifest the intrinsic ORR activity of Fe SAC@G originated from the newly-formed FeN -O-FeN bridge structure with moderate adsorption ability towards ORR intermediates. These findings provide new ways for designing SACs with high activity and long-term stability.
零维/一维(0D/1D)单原子催化剂(SACs)中金属位点的固有活性和无序分布,导致其在氧还原反应(ORR)中催化效率低下且耐久性短,这限制了氢氧燃料电池和金属空气电池的大规模应用。为了提高SACs的活性,选择了一种温和的合成方法,将一维铁单原子催化剂与二维石墨烯薄膜共轭(Fe SAC@G),实现了具有有序原子铁配位构型的复合结构。该产物在0.1 M KOH水溶液中表现出优异的ORR电催化效率和稳定性。DFT-D计算结果表明,Fe SAC@G的固有ORR活性源于新形成的FeN -O-FeN桥结构,该结构对ORR中间体具有适度的吸附能力。这些发现为设计具有高活性和长期稳定性的SACs提供了新途径。