Xue Qian, Qi Xuede, Li Kun, Zeng Yi, Xu Feng, Zhang Kai, Qi Xueqiang, Li Li, Cabot Andreu
College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 China
Catalonia Institute for Energy Research (IREC) Sant Adrià de Besòs Barcelona 08930 Spain
RSC Adv. 2024 May 21;14(23):16379-16388. doi: 10.1039/d4ra01754d. eCollection 2024 May 15.
An FeN single-atom catalyst (SAC) embedded in a graphene matrix is considered an oxygen reduction reaction (ORR) catalyst for its good activity and durability, and decoration on the Fe active site can further modulate the performance of the FeN SAC. In this work, the axial heteroatom (L = P, S and Cl)-decorated FeN SAC (FeNL) and pure FeN were comparatively studied using density functional theory (DFT) calculations. It was found that the rate-determining step (RDS) in the ORR on pure FeN is the reduction of OH to HO in the last step with an overpotential of 0.58 V. However, the RDS of the ORR for the axial heteroatom-decorated FeNL is the reduction of O to OOH in the first step. The axial P and S heteroatom-decorated FeNP and FeNS exhibit lower activity than pure FeN since the overpotentials of the ORR on FeNP and FeNS are 1.02 V and 1.09 V, respectively. Meanwhile, FeNCl exhibits the best activity towards the ORR since it possesses the lowest overpotential (0.51 V). The main reason is that the axial heteroatom decoration alleviates the adsorption of all the species in the whole ORR, thus modulating the free energy in every elementary reaction step. A volcano relationship between the d band center and the ORR activity can be determined among the axial heteroatom-decorated FeNL SACs. The d band center of the Fe atom in various FeNL SACs follows the order of FeN > FeNCl > FeNS > FeNP, whereas the overpotential of the ORR on various catalysts follows the order of FeNCl > FeN > FeNS ≈ FeNP. Δ(*OH) is a simple descriptor for the prediction of the ORR activity of various axial heteroatom-decorated FeNL, although the RDS in the ORR is either the first step or the last step. This paper provides a guide to the design and selection of the ORR over SACs with different axial heteroatom decorations, contributing to the rational design of more powerful ORR electrocatalysts and achieving advances in electrochemical conversion and storage devices.
嵌入石墨烯基体中的铁氮单原子催化剂(SAC)因其良好的活性和耐久性被视为氧还原反应(ORR)催化剂,并且在铁活性位点上进行修饰可以进一步调节铁氮SAC的性能。在这项工作中,使用密度泛函理论(DFT)计算对轴向杂原子(L = P、S和Cl)修饰的铁氮SAC(FeNL)和纯铁氮进行了比较研究。研究发现,纯铁氮上ORR的速率决定步骤(RDS)是最后一步中OH还原为HO,过电位为0.58 V。然而,轴向杂原子修饰的FeNL的ORR的RDS是第一步中O还原为OOH。轴向P和S杂原子修饰的FeNP和FeNS的活性低于纯铁氮,因为FeNP和FeNS上ORR的过电位分别为1.02 V和1.09 V。同时,FeNCl对ORR表现出最佳活性,因为它具有最低的过电位(0.51 V)。主要原因是轴向杂原子修饰减轻了整个ORR中所有物种的吸附,从而调节了每个基元反应步骤中的自由能。在轴向杂原子修饰的FeNL SAC之间可以确定d带中心与ORR活性之间的火山关系。各种FeNL SAC中Fe原子的d带中心遵循FeN > FeNCl > FeNS > FeNP的顺序,而各种催化剂上ORR的过电位遵循FeNCl > FeN > FeNS ≈ FeNP的顺序。Δ(*OH)是预测各种轴向杂原子修饰的FeNL的ORR活性的一个简单描述符,尽管ORR中的RDS是第一步或最后一步。本文为设计和选择具有不同轴向杂原子修饰的SAC上的ORR提供了指导,有助于合理设计更强大的ORR电催化剂,并在电化学转换和存储设备方面取得进展。