Suppr超能文献

大分子对脑 H 磁共振波谱的贡献:专家共识建议。

Contribution of macromolecules to brain H MR spectra: Experts' consensus recommendations.

机构信息

Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland.

Magnetic Resonance Research Center and Department of Psychiatry, Yale University, New Haven, Connecticut, USA.

出版信息

NMR Biomed. 2021 May;34(5):e4393. doi: 10.1002/nbm.4393. Epub 2020 Nov 25.

Abstract

Proton MR spectra of the brain, especially those measured at short and intermediate echo times, contain signals from mobile macromolecules (MM). A description of the main MM is provided in this consensus paper. These broad peaks of MM underlie the narrower peaks of metabolites and often complicate their quantification but they also may have potential importance as biomarkers in specific diseases. Thus, separation of broad MM signals from low molecular weight metabolites enables accurate determination of metabolite concentrations and is of primary interest in many studies. Other studies attempt to understand the origin of the MM spectrum, to decompose it into individual spectral regions or peaks and to use the components of the MM spectrum as markers of various physiological or pathological conditions in biomedical research or clinical practice. The aim of this consensus paper is to provide an overview and some recommendations on how to handle the MM signals in different types of studies together with a list of open issues in the field, which are all summarized at the end of the paper.

摘要

脑质子磁共振波谱,尤其是那些在短和中等回波时间测量的,包含来自移动大分子(MM)的信号。本共识文件提供了对主要 MM 的描述。这些 MM 的宽峰位于代谢物的较窄峰之下,常常使它们的定量复杂化,但它们也可能作为特定疾病的生物标志物具有潜在的重要性。因此,将宽 MM 信号与低分子量代谢物分离,可实现对代谢物浓度的准确测定,这是许多研究的主要关注点。其他研究试图了解 MM 谱的起源,将其分解为单个谱区或峰,并将 MM 谱的组成部分用作生物医学研究或临床实践中各种生理或病理状态的标志物。本共识文件的目的是概述和提供一些建议,说明如何在不同类型的研究中处理 MM 信号,以及该领域的一些未解决问题,这些问题都在文末进行了总结。

相似文献

1
Contribution of macromolecules to brain H MR spectra: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4393. doi: 10.1002/nbm.4393. Epub 2020 Nov 25.
2
Mapping of brain macromolecules and their use for spectral processing of (1)H-MRSI data with an ultra-short acquisition delay at 7 T.
Neuroimage. 2015 Nov 1;121:126-35. doi: 10.1016/j.neuroimage.2015.07.042. Epub 2015 Jul 22.
5
Spectral editing in H magnetic resonance spectroscopy: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4411. doi: 10.1002/nbm.4411. Epub 2020 Sep 18.
8
Neurochemical correlations in short echo time proton magnetic resonance spectroscopy.
NMR Biomed. 2023 Jul;36(7):e4910. doi: 10.1002/nbm.4910. Epub 2023 Feb 2.
9
T relaxation times of macromolecules and metabolites in the human brain at 9.4 T.
Magn Reson Med. 2020 Aug;84(2):542-558. doi: 10.1002/mrm.28174. Epub 2020 Jan 31.
10
Investigation of the influence of macromolecules and spline baseline in the fitting model of human brain spectra at 9.4T.
Magn Reson Med. 2019 Feb;81(2):746-758. doi: 10.1002/mrm.27467. Epub 2018 Oct 17.

引用本文的文献

1
MRS-Sim: Open-Source Framework for Simulating In Vivo-Like Magnetic Resonance Spectra.
NMR Biomed. 2025 Oct;38(10):e70130. doi: 10.1002/nbm.70130.
2
Application of a H brain MRS benchmark dataset to deep learning for out-of-voxel artifacts.
Imaging Neurosci (Camb). 2023 Nov 2;1. doi: 10.1162/imag_a_00025. eCollection 2023.
3
MRS-Sim: Open-Source Framework for Simulating In Vivo-like Magnetic Resonance Spectra.
bioRxiv. 2025 Apr 8:2024.12.20.629645. doi: 10.1101/2024.12.20.629645.
6
In vivo GABA detection by single-pulse editing with one shot.
Magn Reson Med. 2025 Jul;94(1):4-14. doi: 10.1002/mrm.30423. Epub 2025 Jan 9.
8
Improved phosphorus MRSI acquisition through compressed sensing acceleration combined with low-rank reconstruction.
MAGMA. 2025 Apr;38(2):161-173. doi: 10.1007/s10334-024-01218-y. Epub 2024 Dec 27.
10
PyAMARES, an Open-Source Python Library for Fitting Magnetic Resonance Spectroscopy Data.
Diagnostics (Basel). 2024 Nov 27;14(23):2668. doi: 10.3390/diagnostics14232668.

本文引用的文献

1
Spectral editing in H magnetic resonance spectroscopy: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4411. doi: 10.1002/nbm.4411. Epub 2020 Sep 18.
3
B shimming for in vivo magnetic resonance spectroscopy: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4350. doi: 10.1002/nbm.4350. Epub 2020 Jun 28.
4
T relaxation times of macromolecules and metabolites in the human brain at 9.4 T.
Magn Reson Med. 2020 Aug;84(2):542-558. doi: 10.1002/mrm.28174. Epub 2020 Jan 31.
5
Diffusion-weighted magnetic resonance spectroscopy enables cell-specific monitoring of astrocyte reactivity in vivo.
Neuroimage. 2019 May 1;191:457-469. doi: 10.1016/j.neuroimage.2019.02.046. Epub 2019 Feb 25.
6
Multivoxel H-MR Spectroscopy Biometrics for Preoprerative Differentiation Between Brain Tumors.
Tomography. 2018 Dec;4(4):172-181. doi: 10.18383/j.tom.2018.00051.
7
Investigation of the influence of macromolecules and spline baseline in the fitting model of human brain spectra at 9.4T.
Magn Reson Med. 2019 Feb;81(2):746-758. doi: 10.1002/mrm.27467. Epub 2018 Oct 17.
8
Whole-slice mapping of GABA and GABA at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout.
Neuroimage. 2019 Jan 1;184:475-489. doi: 10.1016/j.neuroimage.2018.09.039. Epub 2018 Sep 19.
9
On the relation between MR spectroscopy features and the distance to MRI-visible solid tumor in GBM patients.
Magn Reson Med. 2018 Dec;80(6):2339-2355. doi: 10.1002/mrm.27359. Epub 2018 Jun 12.
10
In vivo estimation of transverse relaxation time constant (T ) of 17 human brain metabolites at 3T.
Magn Reson Med. 2018 Aug;80(2):452-461. doi: 10.1002/mrm.27067. Epub 2018 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验