Suppr超能文献

通过绝热 MEGA 编辑、实时不稳定性校正和同心圆读出实现 GABA 和 GABA 在 7T 下的全片映射。

Whole-slice mapping of GABA and GABA at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout.

机构信息

High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MRI, Vienna, Austria.

High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.

出版信息

Neuroimage. 2019 Jan 1;184:475-489. doi: 10.1016/j.neuroimage.2018.09.039. Epub 2018 Sep 19.

Abstract

An adiabatic MEscher-GArwood (MEGA)-editing scheme, using asymmetric hyperbolic secant editing pulses, was developed and implemented in a B-insensitive, 1D-semiLASER (Localization by Adiabatic SElective Refocusing) MR spectroscopic imaging (MRSI) sequence for the non-invasive mapping of γ-aminobutyric acid (GABA) over a whole brain slice. Our approach exploits the advantages of edited-MRSI at 7T while tackling challenges that arise with ultra-high-field-scans. Spatial-spectral encoding, using density-weighted, concentric circle echo planar trajectory readout, enabled substantial MRSI acceleration and an improved point-spread-function, thereby reducing extracranial lipid signals. Subject motion and scanner instabilities were corrected in real-time using volumetric navigators optimized for 7T, in combination with selective reacquisition of corrupted data to ensure robust subtraction-based MEGA-editing. Simulations and phantom measurements of the adiabatic MEGA-editing scheme demonstrated stable editing efficiency even in the presence of ±0.15 ppm editing frequency offsets and B variations of up to ±30% (as typically encountered in vivo at 7T), in contrast to conventional Gaussian editing pulses. Volunteer measurements were performed with and without global inversion recovery (IR) to study regional GABA levels and their underlying, co-edited, macromolecular (MM) signals at 2.99 ppm. High-quality in vivo spectra allowed mapping of pure GABA and MM-contaminated GABA (GABA + MM) along with Glx (Glu + Gln), with high-resolution (eff. voxel size: 1.4 cm) and whole-slice coverage in 24 min scan time. Metabolic ratio maps of GABA/tNAA, GABA/tNAA, and Glx/tNAA were correlated linearly with the gray matter fraction of each voxel. A 2.15-fold increase in gray matter to white matter contrast was observed for GABA when enabling IR, which we attribute to the higher abundance of macromolecules at 2.99 ppm in the white matter than in the gray matter. In conclusion, adiabatic MEGA-editing with 1D-semiLASER selection is as a promising approach for edited-MRSI at 7T. Our sequence capitalizes on the benefits of ultra-high-field MRSI while successfully mitigating the challenges related to B/B inhomogeneities, prolonged scan times, and motion/scanner instability artifacts. Robust and accurate 2D mapping has been shown for the neurotransmitters GABA and Glx.

摘要

发展并实现了一种绝热 MEscher-GArwood(MEGA)编辑方案,该方案使用非对称双曲正割编辑脉冲,在 B 不敏感的一维半选择性激光(Localization by Adiabatic SElective Refocusing)磁共振波谱成像(MRSI)序列中进行,用于对整个脑切片进行γ-氨基丁酸(GABA)的非侵入性映射。我们的方法利用了 7T 超高场编辑-MRSI 的优势,同时解决了超高场扫描带来的挑战。使用密度加权的同心圆形回波平面轨迹读出进行空间-光谱编码,实现了大幅的 MRSI 加速和改进的点扩散函数,从而减少了颅外脂质信号。使用针对 7T 优化的容积导航器实时校正受试者运动和扫描仪不稳定,并结合对受污染数据的选择性重获取,以确保基于稳健减法的 MEGA 编辑。对绝热 MEGA 编辑方案的模拟和体模测量表明,即使在存在±0.15 ppm 编辑频率偏移和高达±30%的 B 变化(在 7T 中通常在体内遇到)的情况下,编辑效率也非常稳定,与传统的高斯编辑脉冲相比。进行了有和没有全局反转恢复(IR)的志愿者测量,以研究 2.99 ppm 处的局部 GABA 水平及其潜在的、共编辑的大分子(MM)信号。高质量的体内光谱允许沿 Glx(Glu+Gln)映射纯 GABA 和 MM 污染的 GABA(GABA+MM),分辨率高(有效体素大小:1.4 cm),在 24 分钟扫描时间内覆盖整个切片。GABA/tNAA、GABA/tNAA 和 Glx/tNAA 的代谢比图与每个体素的灰质分数呈线性相关。当启用 IR 时,GABA 的灰质与白质对比度增加了 2.15 倍,我们将其归因于白质中大分子的丰度高于灰质中的大分子。总之,具有 1D 半选择性激光选择的绝热 MEGA 编辑是 7T 时编辑-MRSI 的一种很有前途的方法。我们的序列利用了超高场 MRSI 的优势,同时成功地缓解了与 B/B 不均匀性、延长扫描时间和运动/扫描仪不稳定伪影相关的挑战。已经证明,对于神经递质 GABA 和 Glx,可以进行稳健和准确的 2D 映射。

相似文献

1
Whole-slice mapping of GABA and GABA at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout.
Neuroimage. 2019 Jan 1;184:475-489. doi: 10.1016/j.neuroimage.2018.09.039. Epub 2018 Sep 19.
2
3D GABA imaging with real-time motion correction, shim update and reacquisition of adiabatic spiral MRSI.
Neuroimage. 2014 Dec;103:290-302. doi: 10.1016/j.neuroimage.2014.09.032. Epub 2014 Sep 26.
3
Gamma-aminobutyric acid edited echo-planar spectroscopic imaging (EPSI) with MEGA-sLASER at 7T.
Magn Reson Med. 2019 Feb;81(2):773-780. doi: 10.1002/mrm.27450. Epub 2018 Aug 29.
4
SLOW: A novel spectral editing method for whole-brain MRSI at ultra high magnetic field.
Magn Reson Med. 2022 Jul;88(1):53-70. doi: 10.1002/mrm.29220. Epub 2022 Mar 28.
5
Simultaneous multi-region detection of GABA+ and Glx using 3D spatially resolved SLOW-editing and EPSI-readout at 7T.
Neuroimage. 2024 Feb 1;286:120511. doi: 10.1016/j.neuroimage.2024.120511. Epub 2024 Jan 5.
7
Real-time motion- and B0-correction for LASER-localized spiral-accelerated 3D-MRSI of the brain at 3T.
Neuroimage. 2014 Mar;88:22-31. doi: 10.1016/j.neuroimage.2013.09.034. Epub 2013 Nov 5.
8
Spatial variability and reproducibility of GABA-edited MEGA-LASER 3D-MRSI in the brain at 3 T.
NMR Biomed. 2016 Nov;29(11):1656-1665. doi: 10.1002/nbm.3613. Epub 2016 Oct 7.
9
Simultaneous editing of GABA and GSH with Hadamard-encoded MR spectroscopic imaging.
Magn Reson Med. 2019 Jul;82(1):21-32. doi: 10.1002/mrm.27702. Epub 2019 Feb 22.
10
Retrospective motion compensation for edited MR spectroscopic imaging.
Neuroimage. 2019 Nov 15;202:116141. doi: 10.1016/j.neuroimage.2019.116141. Epub 2019 Aug 31.

引用本文的文献

1
High-quality lipid suppression and B0 shimming for human brain H MRSI.
Neuroimage. 2024 Oct 15;300:120845. doi: 10.1016/j.neuroimage.2024.120845. Epub 2024 Sep 12.
2
Atlas-Based Adaptive Hadamard-Encoded MR Spectroscopic Imaging at 3T.
Tomography. 2023 Aug 23;9(5):1592-1602. doi: 10.3390/tomography9050127.
4
SLOW: A novel spectral editing method for whole-brain MRSI at ultra high magnetic field.
Magn Reson Med. 2022 Jul;88(1):53-70. doi: 10.1002/mrm.29220. Epub 2022 Mar 28.
5
γ-aminobutyric acid measurement in the human brain at 7 T: Short echo-time or Mescher-Garwood editing.
NMR Biomed. 2022 Jul;35(7):e4706. doi: 10.1002/nbm.4706. Epub 2022 Feb 18.
6
Comparison of 2-Hydroxyglutarate Detection With sLASER and MEGA-sLASER at 7T.
Front Neurol. 2021 Sep 7;12:718423. doi: 10.3389/fneur.2021.718423. eCollection 2021.
7
Inter-subject stability and regional concentration estimates of 3D-FID-MRSI in the human brain at 7 T.
NMR Biomed. 2021 Dec;34(12):e4596. doi: 10.1002/nbm.4596. Epub 2021 Aug 11.
8
Effect of Ketamine on Human Neurochemistry in Posterior Cingulate Cortex: A Pilot Magnetic Resonance Spectroscopy Study at 3 Tesla.
Front Neurosci. 2021 Mar 24;15:609485. doi: 10.3389/fnins.2021.609485. eCollection 2021.
9
Effects of SSRI treatment on GABA and glutamate levels in an associative relearning paradigm.
Neuroimage. 2021 May 15;232:117913. doi: 10.1016/j.neuroimage.2021.117913. Epub 2021 Feb 28.
10
Contribution of macromolecules to brain H MR spectra: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4393. doi: 10.1002/nbm.4393. Epub 2020 Nov 25.

本文引用的文献

2
GABA and glutamate in children with Tourette syndrome: A H MR spectroscopy study at 7T.
Psychiatry Res Neuroimaging. 2018 Mar 30;273:46-53. doi: 10.1016/j.pscychresns.2017.12.005. Epub 2018 Jan 3.
3
Density-weighted concentric circle trajectories for high resolution brain magnetic resonance spectroscopic imaging at 7T.
Magn Reson Med. 2018 Jun;79(6):2874-2885. doi: 10.1002/mrm.26987. Epub 2017 Nov 6.
4
Real-time Correction of Motion and Imager Instability Artifacts during 3D γ-Aminobutyric Acid-edited MR Spectroscopic Imaging.
Radiology. 2018 Feb;286(2):666-675. doi: 10.1148/radiol.2017170744. Epub 2017 Sep 28.
5
Acute change in anterior cingulate cortex GABA, but not glutamine/glutamate, mediates antidepressant response to citalopram.
Psychiatry Res Neuroimaging. 2017 Nov 30;269:9-16. doi: 10.1016/j.pscychresns.2017.08.009. Epub 2017 Sep 1.
6
Big GABA: Edited MR spectroscopy at 24 research sites.
Neuroimage. 2017 Oct 1;159:32-45. doi: 10.1016/j.neuroimage.2017.07.021. Epub 2017 Jul 14.
7
Divergent influences of anterior cingulate cortex GABA concentrations on the emotion circuitry.
Neuroimage. 2017 Sep;158:136-144. doi: 10.1016/j.neuroimage.2017.06.055. Epub 2017 Jun 29.
8
Activation induced changes in GABA: Functional MRS at 7T with MEGA-sLASER.
Neuroimage. 2017 Aug 1;156:207-213. doi: 10.1016/j.neuroimage.2017.05.044. Epub 2017 May 19.
9
Retrospective correction of frequency drift in spectral editing: The GABA editing example.
NMR Biomed. 2017 Aug;30(8). doi: 10.1002/nbm.3725. Epub 2017 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验