High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MRI, Vienna, Austria.
High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
Neuroimage. 2019 Jan 1;184:475-489. doi: 10.1016/j.neuroimage.2018.09.039. Epub 2018 Sep 19.
An adiabatic MEscher-GArwood (MEGA)-editing scheme, using asymmetric hyperbolic secant editing pulses, was developed and implemented in a B-insensitive, 1D-semiLASER (Localization by Adiabatic SElective Refocusing) MR spectroscopic imaging (MRSI) sequence for the non-invasive mapping of γ-aminobutyric acid (GABA) over a whole brain slice. Our approach exploits the advantages of edited-MRSI at 7T while tackling challenges that arise with ultra-high-field-scans. Spatial-spectral encoding, using density-weighted, concentric circle echo planar trajectory readout, enabled substantial MRSI acceleration and an improved point-spread-function, thereby reducing extracranial lipid signals. Subject motion and scanner instabilities were corrected in real-time using volumetric navigators optimized for 7T, in combination with selective reacquisition of corrupted data to ensure robust subtraction-based MEGA-editing. Simulations and phantom measurements of the adiabatic MEGA-editing scheme demonstrated stable editing efficiency even in the presence of ±0.15 ppm editing frequency offsets and B variations of up to ±30% (as typically encountered in vivo at 7T), in contrast to conventional Gaussian editing pulses. Volunteer measurements were performed with and without global inversion recovery (IR) to study regional GABA levels and their underlying, co-edited, macromolecular (MM) signals at 2.99 ppm. High-quality in vivo spectra allowed mapping of pure GABA and MM-contaminated GABA (GABA + MM) along with Glx (Glu + Gln), with high-resolution (eff. voxel size: 1.4 cm) and whole-slice coverage in 24 min scan time. Metabolic ratio maps of GABA/tNAA, GABA/tNAA, and Glx/tNAA were correlated linearly with the gray matter fraction of each voxel. A 2.15-fold increase in gray matter to white matter contrast was observed for GABA when enabling IR, which we attribute to the higher abundance of macromolecules at 2.99 ppm in the white matter than in the gray matter. In conclusion, adiabatic MEGA-editing with 1D-semiLASER selection is as a promising approach for edited-MRSI at 7T. Our sequence capitalizes on the benefits of ultra-high-field MRSI while successfully mitigating the challenges related to B/B inhomogeneities, prolonged scan times, and motion/scanner instability artifacts. Robust and accurate 2D mapping has been shown for the neurotransmitters GABA and Glx.
发展并实现了一种绝热 MEscher-GArwood(MEGA)编辑方案,该方案使用非对称双曲正割编辑脉冲,在 B 不敏感的一维半选择性激光(Localization by Adiabatic SElective Refocusing)磁共振波谱成像(MRSI)序列中进行,用于对整个脑切片进行γ-氨基丁酸(GABA)的非侵入性映射。我们的方法利用了 7T 超高场编辑-MRSI 的优势,同时解决了超高场扫描带来的挑战。使用密度加权的同心圆形回波平面轨迹读出进行空间-光谱编码,实现了大幅的 MRSI 加速和改进的点扩散函数,从而减少了颅外脂质信号。使用针对 7T 优化的容积导航器实时校正受试者运动和扫描仪不稳定,并结合对受污染数据的选择性重获取,以确保基于稳健减法的 MEGA 编辑。对绝热 MEGA 编辑方案的模拟和体模测量表明,即使在存在±0.15 ppm 编辑频率偏移和高达±30%的 B 变化(在 7T 中通常在体内遇到)的情况下,编辑效率也非常稳定,与传统的高斯编辑脉冲相比。进行了有和没有全局反转恢复(IR)的志愿者测量,以研究 2.99 ppm 处的局部 GABA 水平及其潜在的、共编辑的大分子(MM)信号。高质量的体内光谱允许沿 Glx(Glu+Gln)映射纯 GABA 和 MM 污染的 GABA(GABA+MM),分辨率高(有效体素大小:1.4 cm),在 24 分钟扫描时间内覆盖整个切片。GABA/tNAA、GABA/tNAA 和 Glx/tNAA 的代谢比图与每个体素的灰质分数呈线性相关。当启用 IR 时,GABA 的灰质与白质对比度增加了 2.15 倍,我们将其归因于白质中大分子的丰度高于灰质中的大分子。总之,具有 1D 半选择性激光选择的绝热 MEGA 编辑是 7T 时编辑-MRSI 的一种很有前途的方法。我们的序列利用了超高场 MRSI 的优势,同时成功地缓解了与 B/B 不均匀性、延长扫描时间和运动/扫描仪不稳定伪影相关的挑战。已经证明,对于神经递质 GABA 和 Glx,可以进行稳健和准确的 2D 映射。