Bao Wenda, Qian Guannan, Zhao Lianqi, Yu Yi, Su Longxing, Cai Xincan, Zhao Haojie, Zuo Yuqing, Zhang Yue, Li Haoyuan, Peng Zijian, Li Linsen, Xie Jin
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Department of Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China.
Nano Lett. 2020 Dec 9;20(12):8832-8840. doi: 10.1021/acs.nanolett.0c03778. Epub 2020 Nov 25.
Balancing interfacial stability and Li transfer kinetics through surface engineering is a key challenge in developing high-performance battery materials. Although conformal coating enabled by atomic layer deposition (ALD) has shown great promise in controlling impedance increase upon cycling by minimizing side reactions at the electrode-electrolyte interface, the coating layer itself usually exhibits poor Li conductivity and impedes surface charge transfer. In this work, we have shown that by carefully controlling postannealing temperature of an ultrathin ZrO film prepared by ALD, Zr surface doping could be achieved for Ni-rich layered oxides to accelerate the charge transfer yet provide sufficient protection. Using single-crystal LiNiMnCoO as a model material, we have shown that surface Zr doping combined with ZrO coating can enhance both the cycle performance and rate capability during high-voltage operation. Surface doping via controllable postannealing of ALD surface coating layer reveals an attractive path toward developing stable and Li-conductive interfaces for single-crystal battery materials.
通过表面工程平衡界面稳定性和锂转移动力学是开发高性能电池材料的关键挑战。尽管原子层沉积(ALD)实现的 conformal 涂层在通过最小化电极 - 电解质界面处的副反应来控制循环时的阻抗增加方面显示出巨大潜力,但涂层本身通常表现出较差的锂导电性并阻碍表面电荷转移。在这项工作中,我们表明,通过仔细控制由 ALD 制备的超薄 ZrO 薄膜的后退火温度,可以实现富镍层状氧化物的 Zr 表面掺杂,以加速电荷转移并提供足够的保护。使用单晶 LiNiMnCoO 作为模型材料,我们表明表面 Zr 掺杂与 ZrO 涂层相结合可以提高高压操作期间的循环性能和倍率性能。通过对 ALD 表面涂层进行可控后退火实现表面掺杂,为开发用于单晶电池材料的稳定且锂导电的界面揭示了一条有吸引力的途径。