School of Economics and Management, Xidian University, Xi'an 710126, China.
School of Economics and Management, Beihang University, Beijing 100191, China.
Int J Environ Res Public Health. 2020 Nov 23;17(22):8702. doi: 10.3390/ijerph17228702.
This study aims to estimate the eco-efficiencies of China at provincial levels. The eco-efficiencies of production and treatment stages are disentangled by the network data envelopment analysis (DEA) method. The key driving factors are identified by the integrative use of driving force-pressure-state-impact-response frame model (DPSIR) model and partial least squares structural equation modeling (PLS-SEM) method. This study provides several important findings. In general, the eco-efficiencies of most regions in China are inefficient and show significant regional differences. All DPSIR factors have significant and strong impacts on the eco-efficiency of the treatment stage. The eco-efficiency of the production stage evidently outweighs the eco-efficiency in economically well-developed regions. The originality of this study lies in three aspects. First, using two-stage network DEA, this study dissects the overall eco-efficiency into production efficiency and treatment efficiency. Empirical results provide insights into the root cause of the low efficiency of each province (municipality). Second, on the basis of the DPSIR model, an expanded pool of driving factors is investigated. Third, using the PLS-SEM method to analyze eco-efficiency is more reliable and effective than applying other traditional regression models.
本研究旨在评估中国省级层面的生态效率。采用网络数据包络分析(DEA)方法对生产和处理阶段的生态效率进行了分解。利用驱动力-压力-状态-影响-响应框架模型(DPSIR)和偏最小二乘结构方程建模(PLS-SEM)方法的综合应用,确定了关键驱动因素。本研究提供了一些重要发现。总体而言,中国大多数地区的生态效率效率低下,且呈现出显著的区域差异。所有 DPSIR 因素对处理阶段的生态效率均具有显著且强大的影响。生产阶段的生态效率明显高于经济发达地区的生态效率。本研究的创新性体现在三个方面。首先,采用两阶段网络 DEA,本研究将整体生态效率分解为生产效率和处理效率。实证结果深入了解了每个省份(直辖市)效率低下的根本原因。其次,在 DPSIR 模型的基础上,研究考察了更广泛的驱动因素池。第三,与应用其他传统回归模型相比,使用 PLS-SEM 方法分析生态效率更可靠、更有效。