Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City -University of London, London, EC1V 0HB, UK.
The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Commun Biol. 2020 Nov 25;3(1):707. doi: 10.1038/s42003-020-01438-7.
Neural activity is organized at multiple scales, ranging from the cellular to the whole brain level. Connecting neural dynamics at different scales is important for understanding brain pathology. Neurological diseases and disorders arise from interactions between factors that are expressed in multiple scales. Here, we suggest a new way to link microscopic and macroscopic dynamics through combinations of computational models. This exploits results from statistical decision theory and Bayesian inference. To validate our approach, we used two independent MEG datasets. In both, we found that variability in visually induced oscillations recorded from different people in simple visual perception tasks resulted from differences in the level of inhibition specific to deep cortical layers. This suggests differences in feedback to sensory areas and each subject's hypotheses about sensations due to differences in their prior experience. Our approach provides a new link between non-invasive brain imaging data, laminar dynamics and top-down control.
神经活动在多个尺度上组织,从细胞到整个大脑水平。连接不同尺度的神经动力学对于理解大脑病理学很重要。神经疾病和障碍是由在多个尺度上表达的因素相互作用引起的。在这里,我们通过组合计算模型提出了一种将微观和宏观动力学联系起来的新方法。这利用了统计决策理论和贝叶斯推断的结果。为了验证我们的方法,我们使用了两个独立的 MEG 数据集。在这两个数据集中,我们发现,在简单视觉感知任务中,从不同人记录的视觉诱导振荡的变异性源于特定于深层皮质层的抑制水平的差异。这表明由于先前经验的差异,反馈到感觉区域以及每个主体对感觉的假设存在差异。我们的方法为非侵入性脑成像数据、层动态和自上而下的控制之间提供了新的联系。