Suppr超能文献

用于道路一氧化氮定量监测的片上化学电阻传感器阵列

On-Chip Chemiresistive Sensor Array for On-Road NO Monitoring with Quantification.

作者信息

Moon Hi Gyu, Jung Youngmo, Shin Beomju, Song Young Geun, Kim Jae Hun, Lee Taikjin, Lee Seok, Jun Seong Chan, Kaner Richard B, Kang Chong-Yun, Kim Chulki

机构信息

National Center for Efficacy Evaluation of Respiratory Disease Product Korea Institute of Toxicology Jeongeup Jeollabuk-do 56212 Republic of Korea.

Center for Electronic Materials Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea.

出版信息

Adv Sci (Weinh). 2020 Sep 30;7(22):2002014. doi: 10.1002/advs.202002014. eCollection 2020 Nov.

Abstract

The adverse effects of air pollution on respiratory health make air quality monitoring with high spatial and temporal resolutions essential especially in cities. Despite considerable interest and efforts, the application of various types of sensors is considered immature owing to insufficient sensitivity and cross-interference under ambient conditions. Here, a fully integrated chemiresistive sensor array (CSA) with parts-per-trillion sensitivity is demonstrated with its application for on-road NO monitoring. An analytical model is suggested to describe the kinetics of the sensor responses and quantify molecular binding affinities. Finally, the full characterization of the system is connected to implement on-road measurements on NO vapor with quantification as its ultimate field application. The obtained results suggest that the CSA shows potential as an essential unit to realize an air-quality monitoring network with high spatial and temporal resolutions.

摘要

空气污染对呼吸健康的不利影响使得具有高空间和时间分辨率的空气质量监测至关重要,尤其是在城市中。尽管人们对此兴趣浓厚并付出了诸多努力,但由于在环境条件下灵敏度不足和存在交叉干扰,各类传感器的应用仍被认为不够成熟。在此,展示了一种具有万亿分之一灵敏度的全集成化学电阻传感器阵列(CSA)及其在道路上监测一氧化氮(NO)的应用。提出了一个分析模型来描述传感器响应的动力学并量化分子结合亲和力。最后,将系统的全面表征联系起来,以实现对NO蒸汽的道路测量并进行定量,这是其最终的现场应用。所得结果表明,CSA作为实现具有高空间和时间分辨率的空气质量监测网络的关键单元具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a948/7675194/a8bce78902bd/ADVS-7-2002014-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验