Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201.
Emerg Top Life Sci. 2020 Apr;2(1):93-105. doi: 10.1042/etls20170139. Epub 2020 Apr 18.
Structural biology often focuses primarily on three-dimensional structures of biological macromolecules, deposited in the Protein Data Bank (PDB). This resource is a remarkable entity for the world-wide scientific and medical communities, as well as the general public, as it is a growing translation into three-dimensional space of the vast information in genomic databases, e.g. GENBANK. There is, however, significantly more to understanding biological function than the three-dimensional coordinate space for ground-state structures of biomolecules. The vast array of biomolecules experiences natural dynamics, interconversion between multiple conformational states, and molecular recognition and allosteric events that play out on timescales ranging from picoseconds to seconds. This wide range of timescales demands ingenious and sophisticated experimental tools to sample and interpret these motions, thus enabling clearer insight into functional annotation of the PDB. NMR spectroscopy is unique in its ability to sample this range of timescales at atomic resolution and in physiologically relevant conditions using spin relaxation methods. The field is constantly expanding to provide new creative experiments, to yield more detailed coverage of timescales, and to broaden the power of interpretation and analysis methods. This review highlights the current state of the methodology and examines the extension of analysis tools for more complex experiments and dynamic models. The future for understanding protein dynamics is bright, and these extended tools bring greater compatibility with developments in computational molecular dynamics, all of which will further our understanding of biological molecular functions. These facets place NMR as a key component in integrated structural biology.
结构生物学通常主要关注生物大分子的三维结构,这些结构被保存在蛋白质数据库(PDB)中。这个资源对于全球科学界和医学界以及普通大众来说都是一个非常重要的实体,因为它是将基因组数据库(例如 GENBANK)中的大量信息转化为三维空间的一个不断发展的过程。然而,要理解生物功能,不仅仅需要了解生物分子的基态结构的三维坐标空间。大量的生物分子经历着自然动力学、多种构象状态的相互转换,以及分子识别和变构事件,这些事件发生的时间尺度从皮秒到秒不等。这种广泛的时间尺度需要巧妙而复杂的实验工具来采样和解释这些运动,从而更清楚地了解 PDB 的功能注释。NMR 光谱在原子分辨率和生理相关条件下使用自旋弛豫方法来采样这种时间尺度的能力是独特的。该领域不断发展壮大,提供新的创造性实验,更详细地覆盖时间尺度,并拓宽解释和分析方法的能力。这篇综述强调了该方法的现状,并考察了分析工具的扩展,以适应更复杂的实验和动态模型。理解蛋白质动力学的未来是光明的,这些扩展工具使 NMR 更能与计算分子动力学的发展相兼容,所有这些都将进一步加深我们对生物分子功能的理解。这些方面使 NMR 成为综合结构生物学的关键组成部分。