University of California, Berkeley, CA, USA.
University of California, San Francisco, CA, USA.
Nat Commun. 2020 Nov 26;11(1):6020. doi: 10.1038/s41467-020-19851-1.
Understanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.
理解大脑血管结构和功能需要我们以高时空分辨率在三维(3D)体积内监测分布式血液动力学。目前,缺乏具有亚毛细血管空间分辨率和血流分辨率速度的容积血管成像方法。在这里,我们使用轴向扩展贝塞尔焦点的双光子激光扫描显微镜(TPLSM),在足以测量毛细血管大小和血流的时空分辨率下,在清醒小鼠大脑中捕获容积血液动力学。使用贝塞尔 TPLSM,血管的荧光信号与其大小成正比,这使得可以方便地基于强度分析大体积中血管扩张和收缩动力学。我们观察到瞳孔直径与血管舒张和血管收缩的同步,并以每秒 99 个体积的速度测量 3D 血流。贝塞尔 TPLSM 展示了对清醒大脑血液动力学的高通量监测,我们期望它对神经血管研究产生广泛影响。