Li Yanping, Xu Xiangcong, Zhang Chao, Sun Xuefeng, Zhou Sisi, Li Xuan, Guo Jiaqing, Hu Rui, Qu Junle, Liu Liwei
State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Adv Sci (Weinh). 2025 Feb;12(7):e2410605. doi: 10.1002/advs.202410605. Epub 2024 Dec 23.
Monitoring the morphological and biochemical information of neurons and glial cells at high temporal resolution in three-dimensional (3D) volumes of in vivo is pivotal for understanding their structure and function, and quantifying the brain microenvironment. Conventional two-photon fluorescence lifetime volumetric imaging speed faces the acquisition speed challenges of slow serial focal tomographic scanning, complex post-processing procedures for lifetime images, and inherent trade-offs among contrast, signal-to-noise ratio, and speed. This study presents a two-photon fluorescence lifetime volumetric projection microscopy using an axially elongated Bessel focus and instant frequency-domain fluorescence lifetime technique, and integrating with a convolutional network to enhance the imaging speed for in vivo neurodynamics mapping. The proposed method is validated by monitoring intracellular Ca concentration throughout whole volume, tracking microglia movement and microenvironmental changes following thermal injury in the zebrafish brain, analyzing structural and functional variations of gap junctions in astrocyte networks, and measuring the Ca concentration in neurons in mouse brains. This innovative methodology enables quantitative in vivo visualization of neurodynamics and the cellular processes and interactions in the brain.
在体内的三维(3D)体积中以高时间分辨率监测神经元和神经胶质细胞的形态和生化信息,对于理解它们的结构和功能以及量化脑微环境至关重要。传统的双光子荧光寿命体积成像速度面临着串行聚焦断层扫描速度慢、寿命图像复杂的后处理程序以及对比度、信噪比和速度之间固有权衡等采集速度挑战。本研究提出了一种使用轴向拉长的贝塞尔焦点和即时频域荧光寿命技术的双光子荧光寿命体积投影显微镜,并与卷积网络相结合,以提高体内神经动力学映射的成像速度。通过监测整个体积内的细胞内钙浓度、追踪斑马鱼脑热损伤后小胶质细胞的运动和微环境变化、分析星形胶质细胞网络中缝隙连接的结构和功能变化以及测量小鼠脑中神经元的钙浓度,验证了所提出的方法。这种创新方法能够在体内对神经动力学以及大脑中的细胞过程和相互作用进行定量可视化。