Suppr超能文献

Integration of a soft dielectric composite into a cantilever beam for mechanical energy harvesting, comparison between capacitive and triboelectric transducers.

作者信息

Pruvost Mickaël, Smit Wilbert J, Monteux Cécile, Del Corro Pablo, Dufour Isabelle, Ayela Cédric, Poulin Philippe, Colin Annie

机构信息

MIE Team, Chimie Biologie Et Innovation, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.

Sciences Et Ingénierie de La Matière Molle, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 75005, Paris, France.

出版信息

Sci Rep. 2020 Nov 26;10(1):20681. doi: 10.1038/s41598-020-77581-2.

Abstract

Flexible dielectrics that harvest mechanical energy via electrostatic effects are excellent candidates as power sources for wearable electronics or autonomous sensors. The integration of a soft dielectric composite (polydimethylsiloxane PDMS-carbon black CB) into two mechanical energy harvesters is here presented. Both are based on a similar cantilever beam but work on different harvesting principles: variable capacitor and triboelectricity. We show that without an external bias the triboelectric beam harvests a net density power of 0.3 [Formula: see text] under a sinusoidal acceleration of 3.9g at 40 Hz. In a variable capacitor configuration, a bias of 0.15 [Formula: see text] is required to get the same energy harvesting performance under the same working conditions. As variable capacitors' harvesting performance are quadratically dependent on the applied bias, increasing the bias allows the system to harvest energy much more efficiently than the triboelectric one. The present results make CB/PDMS composites promising for autonomous portable multifunctional systems and intelligent sensors.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1da8/7692552/54aa7f4d7a35/41598_2020_77581_Fig1_HTML.jpg

相似文献

3
Barium Titanate Film Interfaces for Hybrid Composite Energy Harvesters.
ACS Appl Mater Interfaces. 2017 Feb 1;9(4):4057-4065. doi: 10.1021/acsami.6b15011. Epub 2017 Jan 23.
4
Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material.
ACS Appl Mater Interfaces. 2021 Sep 15;13(36):42966-42976. doi: 10.1021/acsami.1c13840. Epub 2021 Sep 2.
6
Trapezoidal Cantilever-Structure Triboelectric Nanogenerator Integrated with a Power Management Module for Low-Frequency Vibration Energy Harvesting.
ACS Appl Mater Interfaces. 2022 Feb 2;14(4):5497-5505. doi: 10.1021/acsami.1c23309. Epub 2022 Jan 21.
10
Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO/Polydimethylsiloxane Composite Film.
ACS Appl Mater Interfaces. 2016 Dec 21;8(50):34335-34341. doi: 10.1021/acsami.6b11108. Epub 2016 Dec 9.

引用本文的文献

本文引用的文献

1
Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics.
Research (Wash D C). 2020 Mar 10;2020:8710686. doi: 10.34133/2020/8710686. eCollection 2020.
2
Modelling and testing of a wave energy converter based on dielectric elastomer generators.
Proc Math Phys Eng Sci. 2019 Feb;475(2222):20180566. doi: 10.1098/rspa.2018.0566. Epub 2019 Feb 13.
3
Polymer Informatics: Opportunities and Challenges.
ACS Macro Lett. 2017 Oct;6(10):1078-1082. doi: 10.1021/acsmacrolett.7b00228. Epub 2017 Sep 15.
4
Giant Electrostrictive Response and Piezoresistivity of Emulsion Templated Nanocomposites.
Langmuir. 2017 May 9;33(18):4528-4536. doi: 10.1021/acs.langmuir.6b04185. Epub 2017 Apr 25.
5
Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film.
ACS Appl Mater Interfaces. 2016 Jan 13;8(1):736-44. doi: 10.1021/acsami.5b09907. Epub 2015 Dec 24.
6
Giant Permittivity Polymer Nanocomposites Obtained by Curing a Direct Emulsion.
Langmuir. 2015 Nov 10;31(44):12231-9. doi: 10.1021/acs.langmuir.5b02318. Epub 2015 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验