Suppr超能文献

比较分析转录组谱、组织学和 IDH 突变用于胶质瘤分类。

Comparative analysis of transcriptomic profile, histology, and IDH mutation for classification of gliomas.

机构信息

Center for Biotechnology and Genomic Medicine, Augusta, USA.

Jinfiniti Precision Medicine, Inc., Augusta, USA.

出版信息

Sci Rep. 2020 Nov 26;10(1):20651. doi: 10.1038/s41598-020-77777-6.

Abstract

Gliomas are currently classified through integration of histology and mutation information, with new developments in DNA methylation classification. However, discrepancies exist amongst the major classification methods. This study sought to compare transcriptome-based classification to the established methods. RNAseq and microarray data were obtained for 1032 gliomas from the TCGA and 395 gliomas from REMBRANDT. Data were analyzed using unsupervised and supervised learning and other statistical methods. Global transcriptomic profiles defined four transcriptomic glioma subgroups with 91.4% concordance with the WHO-defined mutation subtypes. Using these subgroups, 168 genes were selected for the development of 1000 linear support vector classifiers (LSVC). Based on plurality voting of 1000 LSVC, the final ensemble classifier confidently classified all but 17 TCGA gliomas to one of the four transcriptomic profile (TP) groups. The classifier was validated using a gene expression microarray dataset. TP1 cases include IDHwt, glioblastoma high immune infiltration and cellular proliferation and poor survival prognosis. TP2a is characterized as IDHmut-codel, oligodendrogliomas with high tumor purity. TP2b tissue is mostly composed of neurons and few infiltrating malignant cells. TP3 exhibit increased NOTCH signaling, are astrocytoma and IDHmut-non-codel. TP groups are highly concordant with both WHO integrated histology and mutation classification as well as methylation-based classification of gliomas. Transcriptomic profiling provides a robust and objective method to classify gliomas with high agreement to the current WHO guidelines and may provide additional survival prediction to the current methods.

摘要

神经胶质瘤目前通过整合组织学和突变信息进行分类,并结合 DNA 甲基化分类的新进展。然而,主要分类方法之间存在差异。本研究旨在比较基于转录组的分类与现有的方法。从 TCGA 获得了 1032 例神经胶质瘤和 REMBRANDT 的 395 例神经胶质瘤的 RNAseq 和微阵列数据。使用无监督和监督学习以及其他统计方法分析数据。全局转录组谱定义了四个转录组神经胶质瘤亚组,与 WHO 定义的突变亚型具有 91.4%的一致性。使用这些亚组,选择了 168 个基因用于开发 1000 个线性支持向量分类器(LSVC)。基于 1000 个 LSVC 的多数投票,最终的集成分类器能够将 TCGA 中的除 17 个神经胶质瘤之外的所有神经胶质瘤准确地分类到四个转录组谱(TP)组之一。该分类器使用基因表达微阵列数据集进行验证。TP1 病例包括 IDHwt、胶质母细胞瘤高免疫浸润和细胞增殖以及不良预后。TP2a 的特征是 IDHmut-codel、少突胶质细胞瘤,肿瘤纯度高。TP2b 组织主要由神经元和少量浸润性恶性细胞组成。TP3 表现出增加的 NOTCH 信号,是星形细胞瘤和 IDHmut-non-codel。TP 组与 WHO 综合组织学和突变分类以及神经胶质瘤的基于甲基化分类高度一致。转录组分析为分类神经胶质瘤提供了一种强大而客观的方法,与目前的 WHO 指南高度一致,并可能为目前的方法提供额外的生存预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e861/7692499/28789f11b957/41598_2020_77777_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验