Suppr超能文献

基于机器学习的嗜酸细胞瘤相关基因特征鉴别肾嫌色细胞癌和嗜酸细胞瘤

Oncocytoma-Related Gene Signature to Differentiate Chromophobe Renal Cancer and Oncocytoma Using Machine Learning.

机构信息

Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Str., Augusta, GA 30912, USA.

Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Str., Augusta, GA 30912, USA.

出版信息

Cells. 2022 Jan 15;11(2):287. doi: 10.3390/cells11020287.

Abstract

Publicly available gene expression datasets were analyzed to develop a chromophobe and oncocytoma related gene signature (COGS) to distinguish chRCC from RO. The datasets GSE11151, GSE19982, GSE2109, GSE8271 and GSE11024 were combined into a discovery dataset. The transcriptomic differences were identified with unsupervised learning in the discovery dataset (97.8% accuracy) with density based UMAP (DBU). The top 30 genes were identified by univariate gene expression analysis and ROC analysis, to create a gene signature called COGS. COGS, combined with DBU, was able to differentiate chRCC from RO in the discovery dataset with an accuracy of 97.8%. The classification accuracy of COGS was validated in an independent meta-dataset consisting of TCGA-KICH and GSE12090, where COGS could differentiate chRCC from RO with 100% accuracy. The differentially expressed genes were involved in carbohydrate metabolism, transcriptomic regulation by TP53, beta-catenin-dependent Wnt signaling, and cytokine (IL-4 and IL-13) signaling highly active in cancer cells. Using multiple datasets and machine learning, we constructed and validated COGS as a tool that can differentiate chRCC from RO and complement histology in routine clinical practice to distinguish these two tumors.

摘要

分析了公开可用的基因表达数据集,以开发一种嗜铬细胞瘤和嗜酸细胞瘤相关基因特征(COGS),用于区分 chRCC 和 RO。将数据集 GSE11151、GSE19982、GSE2109、GSE8271 和 GSE11024 合并到发现数据集中。在发现数据集中使用无监督学习(准确率为 97.8%)和密度基 UMAP(DBU)来识别转录组差异。通过单变量基因表达分析和 ROC 分析确定了前 30 个基因,创建了一个名为 COGS 的基因特征。COGS 与 DBU 结合,能够在发现数据集中以 97.8%的准确率区分 chRCC 和 RO。COGS 的分类准确性在由 TCGA-KICH 和 GSE12090 组成的独立元数据集中得到验证,其中 COGS 能够以 100%的准确率区分 chRCC 和 RO。差异表达的基因参与碳水化合物代谢、TP53 转录调控、β-连环蛋白依赖性 Wnt 信号传导以及细胞因子(IL-4 和 IL-13)信号在癌细胞中高度活跃。使用多个数据集和机器学习,我们构建并验证了 COGS 作为一种工具,可以区分 chRCC 和 RO,并在常规临床实践中补充组织学,以区分这两种肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836e/8774230/aceb3b60c152/cells-11-00287-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验