School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada.
Matrix Biol. 2021 Feb;96:1-17. doi: 10.1016/j.matbio.2020.11.002. Epub 2020 Nov 25.
In cartilage tissue engineering, one key challenge is for regenerative tissue to recapitulate the biomechanical functions of native cartilage while maintaining normal mechanosensitive activities of chondrocytes. Thus, it is imperative to discern the micromechanobiological functions of the pericellular matrix, the ~ 2-4 µm-thick domain that is in immediate contact with chondrocytes. In this study, we discovered that decorin, a small leucine-rich proteoglycan, is a key determinant of cartilage pericellular matrix micromechanics and chondrocyte mechanotransduction in vivo. The pericellular matrix of decorin-null murine cartilage developed reduced content of aggrecan, the major chondroitin sulfate proteoglycan of cartilage and a mild increase in collagen II fibril diameter vis-à-vis wild-type controls. As a result, decorin-null pericellular matrix showed a significant reduction in micromodulus, which became progressively more pronounced with maturation. In alignment with the defects of pericellular matrix, decorin-null chondrocytes exhibited decreased intracellular calcium activities, [Ca], in both physiologic and osmotically evoked fluidic environments in situ, illustrating impaired chondrocyte mechanotransduction. Next, we compared [Ca] activities of wild-type and decorin-null chondrocytes following enzymatic removal of chondroitin sulfate glycosaminoglycans. The results showed that decorin mediates chondrocyte mechanotransduction primarily through regulating the integrity of aggrecan network, and thus, aggrecan-endowed negative charge microenvironment in the pericellular matrix. Collectively, our results provide robust genetic and biomechanical evidence that decorin is an essential constituent of the native cartilage matrix, and suggest that modulating decorin activities could improve cartilage regeneration.
在软骨组织工程中,一个关键的挑战是再生组织要能够重现天然软骨的生物力学功能,同时保持软骨细胞的正常力敏感活性。因此,必须辨别细胞外基质的微观机械生物学功能,细胞外基质是与软骨细胞直接接触的约 2-4 µm 厚的区域。在这项研究中,我们发现,一种小型富含亮氨酸的蛋白聚糖——核心蛋白聚糖是软骨细胞外基质微观力学和软骨细胞力转导的关键决定因素。核心蛋白聚糖缺失的鼠软骨细胞外基质中聚集蛋白聚糖的含量减少,聚集蛋白聚糖是软骨中主要的软骨素硫酸盐蛋白聚糖,而胶原 II 纤维直径略有增加,与野生型对照相比。因此,核心蛋白聚糖缺失的细胞外基质的微模量显著降低,随着成熟度的增加,这种降低变得越来越明显。与细胞外基质的缺陷相一致,核心蛋白聚糖缺失的软骨细胞在体内生理和渗透诱发的流体环境中表现出细胞内钙离子活性[Ca]的降低,表明软骨细胞力转导受损。接下来,我们比较了在去除软骨素硫酸盐糖胺聚糖后,野生型和核心蛋白聚糖缺失的软骨细胞的[Ca]活性。结果表明,核心蛋白聚糖通过调节聚集蛋白聚糖网络的完整性,从而调节细胞外基质中聚集蛋白聚糖赋予的负电荷微环境,介导软骨细胞力转导。总的来说,我们的结果提供了强有力的遗传和生物力学证据,证明核心蛋白聚糖是天然软骨基质的重要组成部分,并表明调节核心蛋白聚糖的活性可以改善软骨再生。