Suppr超能文献

核心蛋白聚糖调控软骨细胞周基质的微力学特性。

Decorin regulates cartilage pericellular matrix micromechanobiology.

机构信息

School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.

Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada.

出版信息

Matrix Biol. 2021 Feb;96:1-17. doi: 10.1016/j.matbio.2020.11.002. Epub 2020 Nov 25.

Abstract

In cartilage tissue engineering, one key challenge is for regenerative tissue to recapitulate the biomechanical functions of native cartilage while maintaining normal mechanosensitive activities of chondrocytes. Thus, it is imperative to discern the micromechanobiological functions of the pericellular matrix, the ~ 2-4 µm-thick domain that is in immediate contact with chondrocytes. In this study, we discovered that decorin, a small leucine-rich proteoglycan, is a key determinant of cartilage pericellular matrix micromechanics and chondrocyte mechanotransduction in vivo. The pericellular matrix of decorin-null murine cartilage developed reduced content of aggrecan, the major chondroitin sulfate proteoglycan of cartilage and a mild increase in collagen II fibril diameter vis-à-vis wild-type controls. As a result, decorin-null pericellular matrix showed a significant reduction in micromodulus, which became progressively more pronounced with maturation. In alignment with the defects of pericellular matrix, decorin-null chondrocytes exhibited decreased intracellular calcium activities, [Ca], in both physiologic and osmotically evoked fluidic environments in situ, illustrating impaired chondrocyte mechanotransduction. Next, we compared [Ca] activities of wild-type and decorin-null chondrocytes following enzymatic removal of chondroitin sulfate glycosaminoglycans. The results showed that decorin mediates chondrocyte mechanotransduction primarily through regulating the integrity of aggrecan network, and thus, aggrecan-endowed negative charge microenvironment in the pericellular matrix. Collectively, our results provide robust genetic and biomechanical evidence that decorin is an essential constituent of the native cartilage matrix, and suggest that modulating decorin activities could improve cartilage regeneration.

摘要

在软骨组织工程中,一个关键的挑战是再生组织要能够重现天然软骨的生物力学功能,同时保持软骨细胞的正常力敏感活性。因此,必须辨别细胞外基质的微观机械生物学功能,细胞外基质是与软骨细胞直接接触的约 2-4 µm 厚的区域。在这项研究中,我们发现,一种小型富含亮氨酸的蛋白聚糖——核心蛋白聚糖是软骨细胞外基质微观力学和软骨细胞力转导的关键决定因素。核心蛋白聚糖缺失的鼠软骨细胞外基质中聚集蛋白聚糖的含量减少,聚集蛋白聚糖是软骨中主要的软骨素硫酸盐蛋白聚糖,而胶原 II 纤维直径略有增加,与野生型对照相比。因此,核心蛋白聚糖缺失的细胞外基质的微模量显著降低,随着成熟度的增加,这种降低变得越来越明显。与细胞外基质的缺陷相一致,核心蛋白聚糖缺失的软骨细胞在体内生理和渗透诱发的流体环境中表现出细胞内钙离子活性[Ca]的降低,表明软骨细胞力转导受损。接下来,我们比较了在去除软骨素硫酸盐糖胺聚糖后,野生型和核心蛋白聚糖缺失的软骨细胞的[Ca]活性。结果表明,核心蛋白聚糖通过调节聚集蛋白聚糖网络的完整性,从而调节细胞外基质中聚集蛋白聚糖赋予的负电荷微环境,介导软骨细胞力转导。总的来说,我们的结果提供了强有力的遗传和生物力学证据,证明核心蛋白聚糖是天然软骨基质的重要组成部分,并表明调节核心蛋白聚糖的活性可以改善软骨再生。

相似文献

1
Decorin regulates cartilage pericellular matrix micromechanobiology.
Matrix Biol. 2021 Feb;96:1-17. doi: 10.1016/j.matbio.2020.11.002. Epub 2020 Nov 25.
2
Decorin Regulates the Aggrecan Network Integrity and Biomechanical Functions of Cartilage Extracellular Matrix.
ACS Nano. 2019 Oct 22;13(10):11320-11333. doi: 10.1021/acsnano.9b04477. Epub 2019 Oct 1.
3
Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis.
Acta Biomater. 2020 Jul 15;111:267-278. doi: 10.1016/j.actbio.2020.05.005. Epub 2020 May 16.
4
Reproducing the Biomechanical Environment of the Chondrocyte for Cartilage Tissue Engineering.
Tissue Eng Part B Rev. 2022 Apr;28(2):405-420. doi: 10.1089/ten.TEB.2020.0373. Epub 2021 Jun 1.
5
Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus.
Matrix Biol. 2020 Jan;85-86:47-67. doi: 10.1016/j.matbio.2019.10.001. Epub 2019 Oct 23.
6
Molecular Engineering of Pericellular Microniche Biomimetic Proteoglycans Modulates Cell Mechanobiology.
ACS Nano. 2022 Jan 25;16(1):1220-1230. doi: 10.1021/acsnano.1c09015. Epub 2022 Jan 11.
7
FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer.
Osteoarthritis Cartilage. 2007 Jul;15(7):752-63. doi: 10.1016/j.joca.2007.01.021. Epub 2007 Mar 23.
9
Forced exercise-induced osteoarthritis is attenuated in mice lacking the small leucine-rich proteoglycan decorin.
Ann Rheum Dis. 2017 Feb;76(2):442-449. doi: 10.1136/annrheumdis-2016-209319. Epub 2016 Jul 4.
10
Mediation of Cartilage Matrix Degeneration and Fibrillation by Decorin in Post-traumatic Osteoarthritis.
Arthritis Rheumatol. 2020 Aug;72(8):1266-1277. doi: 10.1002/art.41254. Epub 2020 Jul 8.

引用本文的文献

1
Structure, Mechanics, and Mechanobiology of Fibrocartilage Pericellular Matrix Mediated by Type V Collagen.
Adv Sci (Weinh). 2025 Aug;12(32):e14750. doi: 10.1002/advs.202414750. Epub 2025 May 23.
3
An enzyme-proof glycan glue for extracellular matrix to ameliorate intervertebral disc degeneration.
Nat Commun. 2025 Apr 16;16(1):3629. doi: 10.1038/s41467-025-58946-5.
6
Proteoglycans in Mechanobiology of Tissues and Organs: Normal Functions and Mechanopathology.
Proteoglycan Res. 2024 Apr-Jun;2(2). doi: 10.1002/pgr2.21. Epub 2024 May 20.
7
The shared molecular mechanism of spinal cord injury and sarcopenia: a comprehensive genomics analysis.
Front Neurol. 2024 Aug 30;15:1373605. doi: 10.3389/fneur.2024.1373605. eCollection 2024.
8
Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis.
Healthcare (Basel). 2024 Aug 19;12(16):1648. doi: 10.3390/healthcare12161648.
9
Biomimetic Proteoglycans Strengthen the Pericellular Matrix of Normal and Osteoarthritic Human Cartilage.
ACS Biomater Sci Eng. 2024 Sep 9;10(9):5617-5623. doi: 10.1021/acsbiomaterials.4c00813. Epub 2024 Aug 12.

本文引用的文献

1
Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis.
Acta Biomater. 2020 Jul 15;111:267-278. doi: 10.1016/j.actbio.2020.05.005. Epub 2020 May 16.
2
Mediation of Cartilage Matrix Degeneration and Fibrillation by Decorin in Post-traumatic Osteoarthritis.
Arthritis Rheumatol. 2020 Aug;72(8):1266-1277. doi: 10.1002/art.41254. Epub 2020 Jul 8.
4
Tendon response to matrix unloading is determined by the patho-physiological niche.
Matrix Biol. 2020 Jul;89:11-26. doi: 10.1016/j.matbio.2019.12.003. Epub 2020 Jan 7.
5
The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues.
Matrix Biol. 2020 Jan;85-86:1-14. doi: 10.1016/j.matbio.2019.11.005. Epub 2019 Dec 2.
6
Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus.
Matrix Biol. 2020 Jan;85-86:47-67. doi: 10.1016/j.matbio.2019.10.001. Epub 2019 Oct 23.
7
Decorin Regulates the Aggrecan Network Integrity and Biomechanical Functions of Cartilage Extracellular Matrix.
ACS Nano. 2019 Oct 22;13(10):11320-11333. doi: 10.1021/acsnano.9b04477. Epub 2019 Oct 1.
8
Scaffold stiffness influences breast cancer cell invasion via EGFR-linked Mena upregulation and matrix remodeling.
Matrix Biol. 2020 Jan;85-86:80-93. doi: 10.1016/j.matbio.2019.07.006. Epub 2019 Jul 16.
9
Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro.
Matrix Biol. 2020 Jan;85-86:15-33. doi: 10.1016/j.matbio.2019.06.009. Epub 2019 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验