School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania19104, United States.
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania19104, United States.
ACS Nano. 2022 Jan 25;16(1):1220-1230. doi: 10.1021/acsnano.1c09015. Epub 2022 Jan 11.
Molecular engineering of biological tissues using synthetic mimics of native matrix molecules can modulate the mechanical properties of the cellular microenvironment through physical interactions with existing matrix molecules, and in turn, mediate the corresponding cell mechanobiology. In articular cartilage, the pericellular matrix (PCM) is the immediate microniche that regulates cell fate, signaling, and metabolism. The negatively charged osmo-environment, as endowed by PCM proteoglycans, is a key biophysical cue for cell mechanosensing. This study demonstrated that biomimetic proteoglycans (BPGs), which mimic the ultrastructure and polyanionic nature of native proteoglycans, can be used to molecularly engineer PCM micromechanics and cell mechanotransduction in cartilage. Upon infiltration into bovine cartilage explant, we showed that localization of BPGs in the PCM leads to increased PCM micromodulus and enhanced chondrocyte intracellular calcium signaling. Applying molecular force spectroscopy, we revealed that BPGs integrate with native PCM through augmenting the molecular adhesion of aggrecan, the major PCM proteoglycan, at the nanoscale. These interactions are enabled by the biomimetic "bottle-brush" ultrastructure of BPGs and facilitate the integration of BPGs within the PCM. Thus, this class of biomimetic molecules can be used for modulating molecular interactions of pericellular proteoglycans and harnessing cell mechanosensing. Because the PCM is a prevalent feature of various cell types, BPGs hold promising potential for improving regeneration and disease modification for not only cartilage-related healthcare but many other tissues and diseases.
利用合成的天然基质分子模拟物对生物组织进行分子工程改造,可以通过与现有基质分子的物理相互作用来调节细胞微环境的机械性能,进而调节相应的细胞机械生物学。在关节软骨中,细胞周基质(PCM)是调节细胞命运、信号转导和代谢的即时微环境。PCM 蛋白聚糖赋予的带负电荷的渗透环境是细胞机械感受器的关键生物物理线索。本研究表明,仿生蛋白聚糖(BPG)可以模拟天然蛋白聚糖的超微结构和聚阴离子性质,用于分子工程改造软骨中的 PCM 微力学和细胞机械转导。在渗透到牛软骨外植体后,我们表明 BPG 在 PCM 中的定位导致 PCM 微模量增加和软骨细胞细胞内钙信号增强。通过应用分子力谱学,我们揭示了 BPG 通过在纳米尺度上增加主要 PCM 蛋白聚糖聚集蛋白聚糖的分子粘附,与天然 PCM 整合。这些相互作用得益于 BPG 的仿生“瓶刷”超微结构,并促进了 BPG 与 PCM 的整合。因此,这类仿生分子可用于调节细胞周蛋白聚糖的分子相互作用,并利用细胞机械感觉。由于 PCM 是各种细胞类型的普遍特征,因此 BPG 具有改善再生和疾病修饰的巨大潜力,不仅对与软骨相关的医疗保健,而且对许多其他组织和疾病也具有巨大潜力。