Suppr超能文献

通过剖析心脏再生增强子来解码器官再生开关。

Decoding an organ regeneration switch by dissecting cardiac regeneration enhancers.

机构信息

Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.

Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Development. 2020 Dec 23;147(24):dev194019. doi: 10.1242/dev.194019.

Abstract

Heart regeneration in regeneration-competent organisms can be accomplished through the remodeling of gene expression in response to cardiac injury. This dynamic transcriptional response relies on the activities of tissue regeneration enhancer elements (TREEs); however, the mechanisms underlying TREEs are poorly understood. We dissected a cardiac regeneration enhancer in zebrafish to elucidate the mechanisms governing spatiotemporal gene expression during heart regeneration. Cardiac regeneration enhancer () exhibits dynamic, regeneration-dependent activity in the heart. We found that multiple injury-activated regulatory elements are distributed throughout the enhancer region. This analysis also revealed that cardiac regeneration enhancers are not only activated by injury, but surprisingly, they are also actively repressed in the absence of injury. Our data identified a short (22 bp) DNA element containing a key repressive element. Comparative analysis across species indicated that the repressive element is conserved in closely related species. The repression mechanism is not operational during embryogenesis and emerges when the heart begins to mature. Incorporating both activation and repression components into the mechanism of tissue regeneration constitutes a new paradigm that might be extrapolated to other regeneration scenarios.

摘要

在具有再生能力的生物中,心脏再生可以通过基因表达的重塑来实现,以响应心脏损伤。这种动态的转录反应依赖于组织再生增强子元件(TREEs)的活性;然而,TREEs 的机制还知之甚少。我们解析了斑马鱼中的心脏再生增强子,以阐明心脏再生过程中时空基因表达的调控机制。心脏再生增强子()在心脏中表现出动态的、再生依赖性的活性。我们发现,多个损伤激活的调控元件分布在整个增强子区域。这项分析还表明,心脏再生增强子不仅在受到损伤时被激活,而且令人惊讶的是,在没有损伤的情况下,它们也被主动抑制。我们的数据确定了一个包含关键抑制元件的短(22bp)DNA 元件。跨物种的比较分析表明,该抑制元件在亲缘关系密切的物种中是保守的。抑制机制在胚胎发生过程中不起作用,而是在心脏开始成熟时出现。将激活和抑制组件纳入组织再生机制构成了一个新的范例,可能会被推广到其他再生场景。

相似文献

2
Modulation of tissue repair by regeneration enhancer elements.再生增强元件对组织修复的调节作用。
Nature. 2016 Apr 14;532(7598):201-6. doi: 10.1038/nature17644. Epub 2016 Apr 6.
3
Cardiac enhancers: Gateway to the regulatory mechanisms of heart regeneration.心脏增强子:通向心脏再生调控机制的大门。
Semin Cell Dev Biol. 2025 Jun;170:103610. doi: 10.1016/j.semcdb.2025.103610. Epub 2025 Apr 10.

引用本文的文献

2
Cardiac enhancers: Gateway to the regulatory mechanisms of heart regeneration.心脏增强子:通向心脏再生调控机制的大门。
Semin Cell Dev Biol. 2025 Jun;170:103610. doi: 10.1016/j.semcdb.2025.103610. Epub 2025 Apr 10.
5
Hallmarks of regeneration.再生的特征。
Cell Stem Cell. 2024 Sep 5;31(9):1244-1261. doi: 10.1016/j.stem.2024.07.007. Epub 2024 Aug 19.
8
A screen for regeneration-associated silencer regulatory elements in zebrafish.斑马鱼中再生相关沉默调控元件的筛选。
Dev Cell. 2024 Mar 11;59(5):676-691.e5. doi: 10.1016/j.devcel.2024.01.004. Epub 2024 Jan 29.
9
Animal models to study cardiac regeneration.用于研究心脏再生的动物模型。
Nat Rev Cardiol. 2024 Feb;21(2):89-105. doi: 10.1038/s41569-023-00914-x. Epub 2023 Aug 14.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验