The Child Mind Institute, 101 East 56th Street, New York, NY 10022, United States.
Department of Biomedical Engineering, Institute for Computational Medicine, Kavli Neuroscience Discovery Institute, Johns Hopkins University, 3400N. Charles St Baltimore, MD 21218, United States.
Neuroimage. 2021 Feb 1;226:117549. doi: 10.1016/j.neuroimage.2020.117549. Epub 2020 Nov 26.
Compelling evidence suggests the need for more data per individual to reliably map the functional organization of the human connectome. As the notion that 'more data is better' emerges as a golden rule for functional connectomics, researchers find themselves grappling with the challenges of how to obtain the desired amounts of data per participant in a practical manner, particularly for retrospective data aggregation. Increasingly, the aggregation of data across all fMRI scans available for an individual is being viewed as a solution, regardless of scan condition (e.g., rest, task, movie). A number of open questions exist regarding the aggregation process and the impact of different decisions on the reliability of resultant aggregate data. We leveraged the availability of highly sampled test-retest datasets to systematically examine the impact of data aggregation strategies on the reliability of cortical functional connectomics. Specifically, we compared functional connectivity estimates derived after concatenating from: 1) multiple scans under the same state, 2) multiple scans under different states (i.e. hybrid or general functional connectivity), and 3) subsets of one long scan. We also varied connectivity processing (i.e. global signal regression, ICA-FIX, and task regression) and estimation procedures. When the total number of time points is equal, and the scan state held constant, concatenating multiple shorter scans had a clear advantage over a single long scan. However, this was not necessarily true when concatenating across different fMRI states (i.e. task conditions), where the reliability from the aggregate data varied across states. Concatenating fewer numbers of states that are more reliable tends to yield higher reliability. Our findings provide an overview of multiple dependencies of data concatenation that should be considered to optimize reliability in analysis of functional connectivity data.
有强有力的证据表明,需要为每个人提供更多的数据,以可靠地绘制人类连接组的功能组织图。随着“更多的数据更好”的观念成为功能连接组学的黄金法则,研究人员发现自己正在努力应对如何以实际的方式为每个参与者获得所需数量的数据的挑战,特别是对于回顾性数据聚合。越来越多的人认为,无论扫描条件如何(例如,休息、任务、电影),都可以将个体所有 fMRI 扫描的数据聚合起来作为一种解决方案。关于聚合过程以及不同决策对结果聚合数据可靠性的影响,仍然存在许多悬而未决的问题。我们利用高度采样的测试-重测数据集的可用性,系统地检查了数据聚合策略对皮质功能连接组学可靠性的影响。具体来说,我们比较了以下几种方法得到的功能连接估计值:1)在相同状态下的多个扫描,2)在不同状态下的多个扫描(即混合或一般功能连接),以及 3)一个长扫描的子集。我们还改变了连接处理(即全局信号回归、ICA-FIX 和任务回归)和估计过程。当总时间点数相等且扫描状态保持不变时,将多个较短的扫描串联起来比单个长扫描具有明显的优势。然而,当在不同的 fMRI 状态(即任务条件)上进行串联时,这种情况并不一定成立,因为聚合数据的可靠性因状态而异。串联更可靠的较少状态通常会产生更高的可靠性。我们的研究结果提供了对数据串联的多种依赖关系的概述,这些依赖关系应该在分析功能连接数据时进行考虑,以优化可靠性。