Suppr超能文献

静息态功能连接的可靠性建模。

Reliability modelling of resting-state functional connectivity.

机构信息

Brain Center Rudolf Magnus and Department of Psychiatry, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands.

Brain Center Rudolf Magnus and Department of Psychiatry, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands.

出版信息

Neuroimage. 2021 May 1;231:117842. doi: 10.1016/j.neuroimage.2021.117842. Epub 2021 Feb 11.

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has an inherently low signal-to-noise ratio largely due to thermal and physiological noise that attenuates the functional connectivity (FC) estimates. Such attenuation limits the reliability of FC and may bias its association with other traits. Low reliability also limits heritability estimates. Classical test theory can be used to obtain a true correlation estimate free of random measurement error from parallel tests, such as split-half sessions of a rs-fMRI scan. We applied a measurement model to split-half FC estimates from the resting-state fMRI data of 1003 participants from the Human Connectome Project (HCP) to examine the benefit of reliability modelling of FC in association with traits from various domains. We evaluated the efficiency of the measurement model on extracting a stable and reliable component of FC and its association with several traits for various sample sizes and scan durations. In addition, we aimed to replicate our previous findings of increased heritability estimates when using a measurement model in a longitudinal adolescent twin cohort. The split-half measurement model improved test-retest reliability of FC on average with +0.33 points (from +0.49 to +0.82), improved strength of associations between FC and various traits on average 1.2-fold (range 1.09-1.35), and increased heritability estimates on average with +20% points (from 39% to 59%) for the full HCP dataset. On average, about half of the variance in split-session FC estimates was attributed to the stable and reliable component of FC. Shorter scan durations showed greater benefit of reliability modelling (up to 1.6-fold improvement), with an additional gain for smaller sample sizes (up to 1.8-fold improvement). Reliability modelling of FC based on a split-half using a measurement model can benefit genetic and behavioral studies by extracting a stable and reliable component of FC that is free from random measurement error and improves genetic and behavioral associations.

摘要

静息态功能磁共振成像(rs-fMRI)的固有信噪比低,主要是由于热噪声和生理噪声衰减了功能连接(FC)的估计值。这种衰减限制了 FC 的可靠性,可能会影响其与其他特征的关联。低可靠性也限制了遗传力的估计。经典测试理论可用于从平行测试中获得真实的无随机测量误差的相关估计值,例如 rs-fMRI 扫描的半分割会话。我们应用测量模型来分析来自人类连接组计划(HCP)的 1003 名参与者的静息态 fMRI 数据的半分割 FC 估计值,以研究 FC 的可靠性建模在与来自不同领域的特征关联中的获益。我们评估了测量模型在提取 FC 的稳定可靠成分及其与各种特征的关联方面的效率,以及在不同样本量和扫描持续时间下的效率。此外,我们旨在在一个纵向青少年双胞胎队列中使用测量模型复制我们之前发现的遗传力估计值增加的结果。半分割测量模型平均提高了 FC 的测试-重测可靠性(增加了 0.33 分,从 0.49 增加到 0.82),平均提高了 FC 与各种特征之间的关联强度 1.2 倍(范围为 1.09-1.35),并且平均增加了遗传力估计值 20%(从 39%增加到 59%),对于完整的 HCP 数据集。平均而言,大约一半的半分割 FC 估计值的方差归因于 FC 的稳定可靠成分。扫描持续时间越短,可靠性建模的获益越大(高达 1.6 倍的改善),对于样本量较小的情况,获益更大(高达 1.8 倍的改善)。基于半分割的 FC 可靠性建模可以通过提取无随机测量误差的稳定可靠的 FC 成分,来提高遗传和行为研究的效率,同时改善遗传和行为关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验