Suppr超能文献

预测建模可提高静息态 fMRI 的测试-重测可靠性。

Boost in Test-Retest Reliability in Resting State fMRI with Predictive Modeling.

机构信息

Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Cereb Cortex. 2021 May 10;31(6):2822-2833. doi: 10.1093/cercor/bhaa390.

Abstract

Recent studies found low test-retest reliability in functional magnetic resonance imaging (fMRI), raising serious concerns among researchers, but these studies mostly focused on the reliability of individual fMRI features (e.g., individual connections in resting state connectivity maps). Meanwhile, neuroimaging researchers increasingly employ multivariate predictive models that aggregate information across a large number of features to predict outcomes of interest, but the test-retest reliability of predicted outcomes of these models has not previously been systematically studied. Here we apply 10 predictive modeling methods to resting state connectivity maps from the Human Connectome Project dataset to predict 61 outcome variables. Compared with mean reliability of individual resting state connections, we find mean reliability of the predicted outcomes of predictive models is substantially higher for all 10 modeling methods assessed. Moreover, improvement was consistently observed across all scanning and processing choices (i.e., scan lengths, censoring thresholds, volume- vs. surface-based processing). For the most reliable methods, the reliability of predicted outcomes was mostly, though not exclusively, in the "good" range (above 0.60). Finally, we identified three mechanisms that help to explain why predicted outcomes of predictive models have higher reliability than individual imaging features. We conclude that researchers can potentially achieve higher test-retest reliability by making greater use of predictive models.

摘要

最近的研究发现功能磁共振成像(fMRI)的测试-重测信度较低,这引起了研究人员的严重关注,但这些研究大多集中在单个 fMRI 特征(例如,静息态连接图中的单个连接)的可靠性上。同时,神经影像学研究人员越来越多地采用多元预测模型,该模型可以聚合大量特征的信息来预测感兴趣的结果,但这些模型的预测结果的测试-重测信度尚未得到系统研究。在这里,我们应用 10 种预测建模方法对人类连接组计划数据集的静息态连接图进行分析,以预测 61 个结果变量。与单个静息态连接的平均可靠性相比,我们发现,在评估的所有 10 种建模方法中,预测模型的预测结果的平均可靠性显著更高。此外,在所有扫描和处理选择(即扫描长度、屏蔽阈值、基于体素和基于表面的处理)中都观察到了一致性的提高。对于最可靠的方法,尽管并非完全如此,但预测结果的可靠性大多处于“良好”范围(高于 0.60)。最后,我们确定了三种有助于解释为什么预测模型的预测结果比单个成像特征具有更高可靠性的机制。我们的结论是,研究人员可以通过更多地使用预测模型来提高测试-重测信度。

相似文献

3
Reliability modelling of resting-state functional connectivity.静息态功能连接的可靠性建模。
Neuroimage. 2021 May 1;231:117842. doi: 10.1016/j.neuroimage.2021.117842. Epub 2021 Feb 11.
4
Test-retest reliability of dynamic functional connectivity in resting state fMRI.静息态 fMRI 中动态功能连接的重测信度。
Neuroimage. 2018 Dec;183:907-918. doi: 10.1016/j.neuroimage.2018.08.021. Epub 2018 Aug 16.

引用本文的文献

7
What is the best brain state to predict autistic traits?预测自闭症特征的最佳大脑状态是什么?
medRxiv. 2025 Jan 17:2025.01.14.24319457. doi: 10.1101/2025.01.14.24319457.
10
Individual variability in neural representations of mind-wandering.走神的神经表征中的个体差异。
Netw Neurosci. 2024 Oct 1;8(3):808-836. doi: 10.1162/netn_a_00387. eCollection 2024.

本文引用的文献

6
Prediction of neurocognition in youth from resting state fMRI.基于静息态功能磁共振成像预测青少年的神经认知情况
Mol Psychiatry. 2020 Dec;25(12):3413-3421. doi: 10.1038/s41380-019-0481-6. Epub 2019 Aug 19.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验