Suppr超能文献

印度尼西亚流行地区疟疾诊断的显著症状和非症状相关因素。

Significant symptoms and nonsymptom-related factors for malaria diagnosis in endemic regions of Indonesia.

机构信息

Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia.

出版信息

Int J Infect Dis. 2021 Feb;103:194-200. doi: 10.1016/j.ijid.2020.11.177. Epub 2020 Nov 26.

Abstract

OBJECTIVES

This study aims to identify significant symptoms and nonsymptom-related factors for malaria diagnosis in endemic regions of Indonesia.

METHODS

Medical records are collected from patients suffering from malaria and other febrile diseases from public hospitals in endemic regions of Indonesia. Interviews with eight Indonesian medical doctors are conducted. Feature selection and machine learning techniques are used to develop malaria classifiers for identifying significant symptoms and nonsymptom-related factors.

RESULTS

Seven significant symptoms (duration of fever, headache, nausea and vomiting, heartburn, severe symptom, dizziness, and joint pain) and patients' history of malaria as a nonsymptom-related factor contribute most to malaria diagnosis. As a symptom, fever duration is more significant than temperature or fever for distinguishing malaria from other febrile diseases. Shivering, fever, and sweating (known to indicate malaria presence in Indonesia) are shown to be less significant than other symptoms in endemic regions.

CONCLUSIONS

Three most suitable malaria classifiers have been developed to identify the significant features that can be used to predict malaria as distinct from other febrile diseases. With extensive experiments on the classifiers, the significant features identified can help medical doctors in the clinical diagnosis of malaria and raise public awareness of significant malaria symptoms at early stages.

摘要

目的

本研究旨在确定印度尼西亚流行地区疟疾诊断的显著症状和非症状相关因素。

方法

从印度尼西亚流行地区的公立医院中收集患有疟疾和其他发热疾病的患者的病历。对 8 名印度尼西亚医生进行访谈。使用特征选择和机器学习技术开发疟疾分类器,以识别显著症状和非症状相关因素。

结果

7 个显著症状(发热持续时间、头痛、恶心和呕吐、烧心、严重症状、头晕和关节痛)和患者的疟疾史作为非症状相关因素对疟疾诊断的贡献最大。作为一种症状,发热持续时间比体温或发热更能区分疟疾与其他发热性疾病。在流行地区,寒战、发热和出汗(表明疟疾的存在)比其他症状的重要性要低。

结论

已经开发出三种最合适的疟疾分类器,以识别可用于预测疟疾与其他发热性疾病的显著特征。通过对分类器进行广泛的实验,确定的显著特征可以帮助医生进行疟疾的临床诊断,并提高公众对疟疾早期显著症状的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验