Suppr超能文献

优化行为范式以促进精神分裂症和重度抑郁症中快感缺乏及奖赏处理缺陷新疗法的开发:研究方案

Optimizing Behavioral Paradigms to Facilitate Development of New Treatments for Anhedonia and Reward Processing Deficits in Schizophrenia and Major Depressive Disorder: Study Protocol.

作者信息

Bilderbeck Amy C, Raslescu Andreea, Hernaus Dennis, Hayen Anja, Umbricht Daniel, Pemberton Darrel, Tiller Jane, Søgaard Birgitte, Sambeth Anke, van Amelsvoort Therese, Reif Andreas, Papazisis Georgios, Pérez Victor, Elices Matilde, Maurice Damien, Bertaina-Anglade Valérie, Dawson Gerard R, Pollentier Stephane

机构信息

P1vital Ltd, Wallingford, United Kingdom.

School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.

出版信息

Front Psychiatry. 2020 Nov 5;11:536112. doi: 10.3389/fpsyt.2020.536112. eCollection 2020.

Abstract

Behavioral tasks focusing on different subdomains of reward processing may provide more objective and quantifiable measures of anhedonia and impaired motivation compared with clinical scales. Typically, single tasks are used in relatively small studies to compare cases and controls in one indication, but they are rarely included in larger multisite trials. This is due to limited systematic standardization as well as the challenges of deployment in international studies and stringent adherence to the high regulatory requirements for data integrity. The Reward Task Optimization Consortium (RTOC) was formed to facilitate operational implementation of reward processing tasks, making them suitable for use in future large-scale, international, multisite drug development studies across multiple indications. The RTOC clinical study aims to conduct initial optimization of a set of tasks in patients with major depressive disorder (MDD) or schizophrenia (SZ). We will conduct a multicenter study across four EU countries. Participants (MDD = 37, SZ = 37, with ≤80 age- and gender-matched healthy volunteers) will attend a study visit comprising screening, self-report and clinically rated assessments of anhedonia and symptom severity, and three reward processing tasks; specifically, the Grip Strength Effort task, the Doors task, and the Reinforcement Learning Working Memory task. The Grip Strength Effort and Doors tasks include simultaneous electroencephalography/event-related potential recordings. Outcomes will be compared using a two-way group design of MDD and SZ with matched controls, respectively. Further analyses will include anhedonia assessment scores as covariates. Planned analyses will assess whether our findings replicate previously published data, and multisite deployment will be evaluated through assessments of quality and conduct. A subset of participants will complete a second visit, to assess test-retest reliability of the task battery. This study will evaluate the operational deployment of three reward processing tasks to the regulatory standards required for use in drug development trials. We will explore the potential of these tasks to differentiate patients from controls and to provide a quantitative marker of anhedonia and/or impaired motivation, establishing their usefulness as endpoints in multisite clinical trials. This study should demonstrate where multifaceted reward deficits are similar or divergent across patient populations. : ClinicalTrials.gov (NCT04024371).

摘要

与临床量表相比,聚焦于奖赏处理不同子领域的行为任务可能会提供更客观、可量化的快感缺失和动机受损测量方法。通常,在相对较小的研究中使用单一任务来比较某一适应症的病例和对照,但它们很少被纳入大型多中心试验。这是由于系统标准化有限,以及在国际研究中部署的挑战,以及严格遵守对数据完整性的高监管要求。奖赏任务优化联盟(RTOC)的成立是为了促进奖赏处理任务的实际应用,使其适用于未来跨多种适应症的大规模、国际、多中心药物开发研究。RTOC临床研究旨在对重度抑郁症(MDD)或精神分裂症(SZ)患者的一组任务进行初步优化。我们将在四个欧盟国家开展一项多中心研究。参与者(MDD = 37人,SZ = 37人,以及≤80名年龄和性别匹配的健康志愿者)将参加一次研究访视,包括筛查、自我报告以及对快感缺失和症状严重程度的临床评分评估,以及三项奖赏处理任务;具体而言,握力努力任务、门任务和强化学习工作记忆任务。握力努力任务和门任务包括同步脑电图/事件相关电位记录。结果将分别使用MDD和SZ与匹配对照的双向组设计进行比较。进一步的分析将包括将快感缺失评估分数作为协变量。计划中的分析将评估我们的发现是否重复先前发表的数据,并且将通过质量和实施评估来评估多中心部署情况。一部分参与者将完成第二次访视,以评估任务组的重测信度。这项研究将评估三项奖赏处理任务按照药物开发试验所需监管标准的实际应用情况。我们将探索这些任务区分患者与对照以及提供快感缺失和/或动机受损定量指标的潜力,确立它们作为多中心临床试验终点的有用性。这项研究应证明不同患者群体中多方面奖赏缺陷在哪些方面相似或不同。:ClinicalTrials.gov(NCT04024371)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3623/7674850/d9b753766c50/fpsyt-11-536112-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验