Suppr超能文献

基于价值的选择中工作记忆、强化学习和努力之间的相互作用:一种新范式及精神分裂症中的选择性缺陷。

Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia.

作者信息

Collins Anne G E, Albrecht Matthew A, Waltz James A, Gold James M, Frank Michael J

机构信息

Helen Wills Neuroscience Institute, Department of Psychology, University of California, Berkeley, Berkeley, California.

Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland; Curtin Health Innovation Research Institute, School of Public Health, Curtin University, Perth, Western Australia, Australia.

出版信息

Biol Psychiatry. 2017 Sep 15;82(6):431-439. doi: 10.1016/j.biopsych.2017.05.017. Epub 2017 May 31.

Abstract

BACKGROUND

When studying learning, researchers directly observe only the participants' choices, which are often assumed to arise from a unitary learning process. However, a number of separable systems, such as working memory (WM) and reinforcement learning (RL), contribute simultaneously to human learning. Identifying each system's contributions is essential for mapping the neural substrates contributing in parallel to behavior; computational modeling can help to design tasks that allow such a separable identification of processes and infer their contributions in individuals.

METHODS

We present a new experimental protocol that separately identifies the contributions of RL and WM to learning, is sensitive to parametric variations in both, and allows us to investigate whether the processes interact. In experiments 1 and 2, we tested this protocol with healthy young adults (n = 29 and n = 52, respectively). In experiment 3, we used it to investigate learning deficits in medicated individuals with schizophrenia (n = 49 patients, n = 32 control subjects).

RESULTS

Experiments 1 and 2 established WM and RL contributions to learning, as evidenced by parametric modulations of choice by load and delay and reward history, respectively. They also showed interactions between WM and RL, where RL was enhanced under high WM load. Moreover, we observed a cost of mental effort when controlling for reinforcement history: participants preferred stimuli they encountered under low WM load. Experiment 3 revealed selective deficits in WM contributions and preserved RL value learning in individuals with schizophrenia compared with control subjects.

CONCLUSIONS

Computational approaches allow us to disentangle contributions of multiple systems to learning and, consequently, to further our understanding of psychiatric diseases.

摘要

背景

在研究学习时,研究人员直接观察到的只有参与者的选择,而这些选择通常被认为源于单一的学习过程。然而,一些可分离的系统,如工作记忆(WM)和强化学习(RL),会同时对人类学习产生影响。确定每个系统的贡献对于描绘与行为并行起作用的神经基质至关重要;计算建模有助于设计任务,从而能够对这些过程进行可分离的识别,并推断它们在个体中的贡献。

方法

我们提出了一种新的实验方案,该方案能够分别确定RL和WM对学习的贡献,对两者的参数变化敏感,并使我们能够研究这些过程是否相互作用。在实验1和实验2中,我们用健康的年轻人(分别为n = 29和n = 52)对该方案进行了测试。在实验3中,我们用它来研究服用药物的精神分裂症患者(n = 49例患者,n = 32例对照受试者)的学习缺陷。

结果

实验1和实验2确定了WM和RL对学习的贡献,分别通过负荷、延迟和奖励历史对选择的参数调制得到证明。它们还显示了WM和RL之间的相互作用,即在高WM负荷下RL增强。此外,在控制强化历史时,我们观察到了心理努力的代价:参与者更喜欢在低WM负荷下遇到的刺激。实验3揭示了精神分裂症患者与对照受试者相比,WM贡献存在选择性缺陷,而RL价值学习得以保留。

结论

计算方法使我们能够理清多个系统对学习的贡献,从而加深我们对精神疾病的理解。

相似文献

4
Distentangling the systems contributing to changes in learning during adolescence.厘清导致青少年学习变化的系统。
Dev Cogn Neurosci. 2020 Feb;41:100732. doi: 10.1016/j.dcn.2019.100732. Epub 2019 Nov 14.
5
Working Memory Load Strengthens Reward Prediction Errors.工作记忆负荷增强奖励预测误差。
J Neurosci. 2017 Apr 19;37(16):4332-4342. doi: 10.1523/JNEUROSCI.2700-16.2017. Epub 2017 Mar 20.
8
Relevance of working memory for reinforcement learning in older adults varies with timescale of learning.工作记忆与老年人强化学习的相关性随学习时间尺度而异。
Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2020 Sep;27(5):654-676. doi: 10.1080/13825585.2019.1664389. Epub 2019 Sep 22.

引用本文的文献

4
Does an external distractor interfere with the triggering of item-specific control?外部干扰器是否会干扰特定项目控制的触发?
J Exp Psychol Hum Percept Perform. 2025 Jun;51(6):808-825. doi: 10.1037/xhp0001323. Epub 2025 Mar 31.

本文引用的文献

3
Habitual control of goal selection in humans.人类目标选择的习惯性控制。
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13817-22. doi: 10.1073/pnas.1506367112. Epub 2015 Oct 12.
4
Model-based choices involve prospective neural activity.基于模型的选择涉及前瞻性神经活动。
Nat Neurosci. 2015 May;18(5):767-72. doi: 10.1038/nn.3981. Epub 2015 Mar 23.
5
Cognitive effort: A neuroeconomic approach.认知努力:一种神经经济学方法。
Cogn Affect Behav Neurosci. 2015 Jun;15(2):395-415. doi: 10.3758/s13415-015-0334-y.
9
The cognitive neuroscience of working memory.工作记忆的认知神经科学
Annu Rev Psychol. 2015 Jan 3;66:115-42. doi: 10.1146/annurev-psych-010814-015031. Epub 2014 Sep 19.
10
Quantifying the reconfiguration of intrinsic networks during working memory.量化工作记忆期间内在网络的重新配置。
PLoS One. 2014 Sep 5;9(9):e106636. doi: 10.1371/journal.pone.0106636. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验