Suppr超能文献

手性从亚纳秒生化分子向亚微米级等离子体超构表面的传递:物理化学机制、生物传感和生物成像机遇。

Chirality Transfer from Sub-Nanometer Biochemical Molecules to Sub-Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities.

机构信息

State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.

Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.

出版信息

Adv Mater. 2020 Oct;32(41):e1907151. doi: 10.1002/adma.201907151. Epub 2020 Aug 16.

Abstract

Determining the structural chirality of biomolecules is of vital importance in bioscience and biomedicine. Conventional methods for characterizing molecular chirality, e.g., circular dichroism (CD) spectroscopy, require high-concentration specimens due to the weak electronic CD signals of biomolecules such as amino acids. Artificially designed chiral plasmonic metastructures exhibit strong intrinsic chirality. However, the significant size mismatch between metastructures and biomolecules makes the former unsuitable for chirality-recognition-based molecular discrimination. Fortunately, constructing metallic architectures through molecular self-assembly allows chirality transfer from sub-nanometer biomolecules to sub-micrometer, intrinsically achiral plasmonic metastructures by means of either near-field interaction or chirality inheritance, resulting in hybrid systems with CD signals orders of magnitude larger than that of pristine biomolecules. This exotic property provides a new means to determine molecular chirality at extremely low concentrations (ideally at the single-molecule level). Herein, three strategies of chirality transfer from sub-nanometer biomolecules to sub-micrometer metallic metastructures are analyzed. The physiochemical mechanisms responsible for chirality transfer are elaborated and new fascinating opportunities for employing plasmonic metastructures in chirality-based biosensing and bioimaging are outlined.

摘要

确定生物分子的结构手性在生物科学和生物医学中至关重要。传统的分子手性表征方法,例如圆二色性(CD)光谱法,由于氨基酸等生物分子的电子 CD 信号较弱,因此需要高浓度的样本。人为设计的手性等离子体超结构表现出强烈的固有手性。然而,超结构和生物分子之间的显著尺寸不匹配使得前者不适合基于手性识别的分子区分。幸运的是,通过分子自组装构建金属结构可以通过近场相互作用或手性继承,将手性从亚纳米生物分子转移到亚微米、本征无手性的等离子体超结构上,从而产生 CD 信号比原始生物分子大几个数量级的混合系统。这种奇特的性质为在极低浓度(理想情况下为单分子水平)下确定分子手性提供了一种新方法。本文分析了将亚纳米生物分子的手性转移到亚微米金属超结构的三种策略。阐述了手性转移的物理化学机制,并概述了等离子体超结构在手性生物传感和生物成像中的新的迷人应用机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验