Suppr超能文献

在网络物理系统中对五杆连杆机器人的 FOPID 控制器进行稳健优化设计:一种新的仿真-优化方法。

Robust optimal design of FOPID controller for five bar linkage robot in a Cyber-Physical System: A new simulation-optimization approach.

机构信息

Wireless Communication Ecosystem Research Unit, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Wireless Communication Ecosystem Research Unit, Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

出版信息

PLoS One. 2020 Nov 30;15(11):e0242613. doi: 10.1371/journal.pone.0242613. eCollection 2020.

Abstract

This paper aims to further increase the reliability of optimal results by setting the simulation conditions to be as close as possible to the real or actual operation to create a Cyber-Physical System (CPS) view for the installation of the Fractional-Order PID (FOPID) controller. For this purpose, we consider two different sources of variability in such a CPS control model. The first source refers to the changeability of a target of the control model (multiple setpoints) because of environmental noise factors and the second source refers to an anomaly in sensors that is raised in a feedback loop. We develop a new approach to optimize two objective functions under uncertainty including signal energy control and response error control while obtaining the robustness among the source of variability with the lowest computational cost. A new hybrid surrogate-metaheuristic approach is developed using Particle Swarm Optimization (PSO) to update the Gaussian Process (GP) surrogate for a sequential improvement of the robust optimal result. The application of efficient global optimization is extended to estimate surrogate prediction error with less computational cost using a jackknife leave-one-out estimator. This paper examines the challenges of such a robust multi-objective optimization for FOPID control of a five-bar linkage robot manipulator. The results show the applicability and effectiveness of our proposed method in obtaining robustness and reliability in a CPS control system by tackling required computational efforts.

摘要

本文旨在通过将模拟条件设置得尽可能接近实际操作,为分数阶 PID(FOPID)控制器的安装创建一个信息物理系统(CPS)视图,从而进一步提高最优结果的可靠性。为此,我们考虑了 CPS 控制模型中两个不同的变化源。第一个变化源是由于环境噪声因素,控制模型的目标(多个设定点)的可变性;第二个变化源是在反馈回路中出现的传感器异常。我们开发了一种新方法,在不确定条件下优化两个目标函数,包括信号能量控制和响应误差控制,同时在变化源之间获得最低计算成本的鲁棒性。使用粒子群优化(PSO)开发了一种新的混合代理元启发式方法,用于更新高斯过程(GP)代理,以顺序改进鲁棒最优结果。使用自举留一估计器扩展有效全局优化以估计代理预测误差,从而降低计算成本。本文研究了在五杆连杆机器人操纵器的 FOPID 控制中进行这种鲁棒多目标优化的挑战。结果表明,通过解决所需的计算工作量,我们提出的方法在 CPS 控制系统中获得鲁棒性和可靠性方面具有适用性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/713f/7703880/aa5d228371cb/pone.0242613.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验