Suppr超能文献

出院后卒中后疲劳预测列线图的建立与内部验证。

Development and Internal Validation of a Nomogram to Predict Post-Stroke Fatigue After Discharge.

机构信息

Graduate School of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.

Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.

出版信息

J Stroke Cerebrovasc Dis. 2021 Feb;30(2):105484. doi: 10.1016/j.jstrokecerebrovasdis.2020.105484. Epub 2020 Nov 27.

Abstract

OBJECTIVES

We aimed to develop and validate a nomogram for the individualized prediction of the risk of post-stroke fatigue (PSF) after discharge.

MATERIALS AND METHODS

Fatigue was measured using the Fatigue Assessment Scale. Multivariable logistic regression analysis was applied to build a prediction model incorporating the feature selected in the least absolute shrinkage and selection operator regression model. Discrimination, calibration, and clinical usefulness of the predictive model were assessed using the C-index, calibration plot, and decision curve analysis. Internal validation was conducted using bootstrapping validation. Finally, a web application was developed to facilitate the use of the nomogram.

RESULTS

We developed a nomogram based on 95 stroke patients. The predictors included in the nomogram were sex, pre-stroke sarcopenia, acute phase fatigue, dysphagia, and depression. The model displayed good discrimination, with a C-index of 0.801 (95% confidence interval: 0.700-0.902) and good calibration. A high C-index value of 0.762 could still be reached in the interval validation. Decision curve analysis showed that the risk of PSF after discharge was clinically useful when the intervention was decided at the PSF risk possibility threshold of 10% to 90%.

CONCLUSION

This nomogram could be conveniently used to provide an individual, visual, and precise prediction of the risk probability of PSF after being discharged home. Thus, as an aid in decision-making, physicians and other healthcare professionals can use this predictive method to provide early intervention or a discharge plan for stroke patients during the hospitalization period.

摘要

目的

我们旨在开发和验证一种列线图,用于个体化预测出院后卒中后疲劳(PSF)的风险。

材料和方法

使用疲劳评估量表测量疲劳。应用多变量逻辑回归分析构建预测模型,纳入最小绝对值收缩和选择算子回归模型中选择的特征。使用 C 指数、校准图和决策曲线分析评估预测模型的区分度、校准和临床实用性。内部验证采用 bootstrap 验证。最后,开发了一个网络应用程序,以方便列线图的使用。

结果

我们基于 95 例卒中患者开发了一个列线图。纳入列线图的预测因素包括性别、卒中前肌少症、急性期疲劳、吞咽困难和抑郁。该模型显示出良好的区分度,C 指数为 0.801(95%置信区间:0.700-0.902),校准良好。在间隔验证中,仍可达到 0.762 的高 C 指数值。决策曲线分析表明,当干预决策在 PSF 风险可能性阈值为 10%至 90%时,PSF 出院后的风险具有临床实用性。

结论

该列线图可方便地用于提供出院后 PSF 风险概率的个体化、可视化和精确预测。因此,作为决策辅助工具,医生和其他医疗保健专业人员可以使用这种预测方法,在住院期间为卒中患者提供早期干预或出院计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验