Suppr超能文献

基于实时学习率优化的脑网络动力学自适应潜在状态建模。

Adaptive latent state modeling of brain network dynamics with real-time learning rate optimization.

机构信息

Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America.

These authors contributed equally to this work.

出版信息

J Neural Eng. 2021 Mar 9;18(3). doi: 10.1088/1741-2552/abcefd.

Abstract

. Dynamic latent state models are widely used to characterize the dynamics of brain network activity for various neural signal types. To date, dynamic latent state models have largely been developed for stationary brain network dynamics. However, brain network dynamics can be non-stationary for example due to learning, plasticity or recording instability. To enable modeling these non-stationarities, two problems need to be resolved. First, novel methods should be developed that can adaptively update the parameters of latent state models, which is difficult due to the state being latent. Second, new methods are needed to optimize the adaptation learning rate, which specifies how fast new neural observations update the model parameters and can significantly influence adaptation accuracy.. We develop a Rate Optimized-adaptive Linear State-Space Modeling (RO-adaptive LSSM) algorithm that solves these two problems. First, to enable adaptation, we derive a computation- and memory-efficient adaptive LSSM fitting algorithm that updates the LSSM parameters recursively and in real time in the presence of the latent state. Second, we develop a real-time learning rate optimization algorithm. We use comprehensive simulations of a broad range of non-stationary brain network dynamics to validate both algorithms, which together constitute the RO-adaptive LSSM.. We show that the adaptive LSSM fitting algorithm can accurately track the broad simulated non-stationary brain network dynamics. We also find that the learning rate significantly affects the LSSM fitting accuracy. Finally, we show that the real-time learning rate optimization algorithm can run in parallel with the adaptive LSSM fitting algorithm. Doing so, the combined RO-adaptive LSSM algorithm rapidly converges to the optimal learning rate and accurately tracks non-stationarities.. These algorithms can be used to study time-varying neural dynamics underlying various brain functions and enhance future neurotechnologies such as brain-machine interfaces and closed-loop brain stimulation systems.

摘要

动态潜在状态模型广泛用于描述各种神经信号类型的大脑网络活动的动力学。迄今为止,动态潜在状态模型主要是为静止的大脑网络动力学开发的。然而,大脑网络动力学可能是不稳定的,例如由于学习、可塑性或记录不稳定。为了能够对这些非平稳性进行建模,需要解决两个问题。首先,需要开发新的方法来自适应地更新潜在状态模型的参数,由于状态是潜在的,这是很困难的。其次,需要新的方法来优化适应学习率,该学习率指定新的神经观察值多快更新模型参数,这可以显著影响适应准确性。

我们开发了一种速率优化自适应线性状态空间建模(RO-adaptive LSSM)算法来解决这两个问题。首先,为了实现自适应,我们推导了一种计算和内存效率高的自适应 LSSM 拟合算法,该算法在存在潜在状态的情况下,递归地实时更新 LSSM 参数。其次,我们开发了一种实时学习率优化算法。我们使用广泛的非平稳大脑网络动力学的综合模拟来验证这两种算法,这两种算法共同构成了 RO-adaptive LSSM。

我们表明,自适应 LSSM 拟合算法可以准确地跟踪广泛模拟的非平稳大脑网络动力学。我们还发现,学习率显著影响 LSSM 拟合精度。最后,我们表明实时学习率优化算法可以与自适应 LSSM 拟合算法并行运行。这样,组合的 RO-adaptive LSSM 算法可以快速收敛到最佳学习率,并准确地跟踪非平稳性。

这些算法可用于研究各种大脑功能下的时变神经动力学,并增强未来的神经技术,如脑机接口和闭环脑刺激系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验